
IET Software

Special Issue: Knowledge Discovery for Software Development
(KDSD)

Ontology for knowledge condensation to
support expertise location in the code phase
during software development process

ISSN 1751-8806
Received on 1st September 2019
Revised 17th December 2019
Accepted on 27th January 2020
E-First on 8th April 2020
doi: 10.1049/iet-sen.2019.0272
www.ietdl.org

Jose R. Martínez-García1, Francisco-Edgar Castillo-Barrera1, Ramon R. Palacio2 , Gilberto Borrego3,
Juan C. Cuevas-Tello1

1Computer Science, Autonomous University of San Luis Potosi, San Luis Potosí, Mexico
2Unidad Navojoa, Instituto Tecnológico de Sonora, Navojoa, Mexico
3Computación y Diseño, Instituto Tecnológico de Sonora, Cd. Obregón, Mexico

 E-mail: ramon.palacio@itson.edu.mx

Abstract: Software Development is a complex process, in which every software product is a knowledge representation of all the
involved people. In agile software development, knowledge is prone to vaporise, because documentation is not a priority as
indicated in the agile manifesto. This condition generates problems such as poor understanding of the requirements, knowledge
transfer deficiency among developers, time wasted by developers while searching for knowledge. The objective of this work is to
reduce architectural knowledge vaporisation by means of knowledge condensation to support expertise location (high-level
knowledge at a given time). This through an ontology that will condensate the knowledge in the code phase. This study presents
the description of an ontology development process following the Methontology Framework. Results show that the proposed
ontology does not present incongruence or inconsistency and answers the competency questions correctly. The main
contribution of this study is the ontology which brings several benefits such as a shared concept of the knowledge in the code
phase and a way to link the artefacts (resources used by developers in the project) and the experts (artefacts provider).

1 Introduction
Software Development is considered a complex process, in which
every software product is a representation of the knowledge of all
the involved people, due to this knowledge is used to solve client's
needs by generating a computer application [1, 2]. For this reason,
development teams require constant interaction with the project's
stakeholders, since the teams are integrated by people working in
different phases and activities. Particularly, coding is a phase of the
software development cycle, aimed to translate the system design
into code in a given programming language. During this phase, a
lot of knowledge can be shared among the team members [3], for
example, programmers and testers.

In software companies, knowledge can be found in two sources
[4]: (i) artefacts such as documentation [5] (e.g. requirements
document, vision document), source code [6], repositories where
developers store and consult digital (e.g. blogs [7, 8], bookmarks)
or physical documents (e.g. manuals) and project management
tools; (ii) persons with a certain level of knowledge in a specific
area that could be useful to solve problems during development
tasks [9, 10]. Therefore, anyone in a company could be a potential
source of knowledge.

In agile software development, documentation is not a priority,
as expressed in agile manifesto [11], thus, it is reflected in agile
software projects with minimal documentation. This situation is
caused because the face to face interaction is preferred by
developers to clarify doubts or to solve problems. Hence,
knowledge is prone to vaporise due to the manifest's principles [12,
13]. Borrego et al. [13] define architectural knowledge
vaporisation as the loss of artefacts and architectural documents
owed to poor documentation. The fact of not having this
knowledge generates the following problems [14, 15]: (i) poor
understanding of the requirements and technical solutions; (ii)
knowledge transfer deficiency among developers; (iii) evolution
and maintenance drawbacks; and (iv) time wasted by developers
while searching for artefacts or experts. These problems cause the
increase of time and cost in software development projects [16].

To address these problems, developers seek high-level
knowledge at a given time (expertise) [10], through which

developers could resolve problems or doubts that arise daily during
their workday to help them fulfil their activities [17]. However,
developer teams generally do not benefit from this knowledge
(artefacts and experts), generated during the software development
process. Artefacts usually are not linked with their creators,
moreover each person labels or stores knowledge in different ways.
In this case, artefacts become hard to identify, because they are not
available or they get lost (when the provider/creator leaves the
company) [18–21].

Therefore, it is necessary to link the artefacts generated during
the coding phase with the creator (experts). The goal is that
artefacts can be easier to find (expertise) and accessible to
everyone, even when the knowledge provider or the expert is not
present in the company. Thus, knowledge needs to be condensate.
Borrego et al. [13] define the knowledge condensation as the
process of capturing and classifying knowledge before it loses,
where the objective is to ease knowledge retrieval.

This is an important issue because to make good decisions
when having a doubt or problem developers need reliable and
precise information (expertise) [22], developers have an expertise
need and this can be found in different sources as mentioned
before.

In our approach, the knowledge condensation is done by using
ontologies, which are a formal description of a shared concept [23],
and they allow to define a vocabulary to share information in a
certain domain. Moreover, in addition, to help with the decision
making, ontologies could mitigate the problems caused by the
knowledge vaporisation mentioned before, and also could prevent
constant questions to experts which sometimes lead to an erosion
in interpersonal relationships, affecting the knowledge flow.
Additionally, ontologies present a visual way to share a common
understanding of an information structure between several people
or computer systems [24], and also they allow to reuse knowledge
through ambiguities clarification [25].

As we can notice, an ontology can provide benefits in software
development through an information structure that can do
automated reasoning about knowledge in the software development
life cycle (e.g. project management [26], software measurement

IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

234

[27], maintenance [28]). In this sense, the challenge is getting a
described content capable of: (i) distinguish among different word
meanings; (ii) infer relations between words on a specific thematic
context; and (iii) retrieve information according to the user needs.
Thus, information must be described and classified in a way that it
can be understandable for a computer or any user within an
organisation.

In Fig. 1, we present automata to illustrate a scenario of the
expertise location. The transitions are objective reached (OR),
artefact seeking (AS), expert seeking (ES), identifying availability
(IA), resource need (RN), expert unavailable (EU), a resource
founded (RF). The automata have six states {q0, …, q5}. This
scenario starts with a developer having the need of expertise to
solve a problem or doubt (q0). Then, the developer can choose
between an expert search (q2) or an artefact search (q1). The
developer searches for all available artefacts, in the case of
choosing an artefact search (q1). An artefact verification is done to
see if it is fulfilled the objective (q3). If the need for expertise is

satisfied, the problem is solved (q5). On the contrary, if the need for
expertise is not satisfied the developer must check more artefacts to
solve the problem (q1). On the other hand, in the case of choosing
an expert search (q2), the developer does a search looking for
someone with the knowledge to solve the problem or doubt, once
the right person is found, his/her availability must be checked (q4).

Finally, if the expert fulfilled the objective, the problem is
solved (q5). Otherwise, another expert search is needed (q2).
Sometimes an expert can lead the requester to an artefact (q1) and
vice-versa (q2).

As we can see, expertise location is a complex process, since
despite that expertise exists in an organisation, this is not always
accessible. Sometimes an expert is unavailable for diverse reasons,
skips the day, is on vacation, leaves the company etc. Therefore,
artefacts used or created by an expert may not be accessible.

From the above, the main objective of this work is to describe
the development process and validation of a domain ontology,
which is focused on the coding phase of a software development
process. The aim is to link artefacts and experts through an
information structure (ontology).

The rest of the paper is structured as follows: Section 2 shows
the related works of software engineer ontologies; Section 3
presents the methodology followed to develop the ontology; in
Section 4 we present the results obtained following the
methodology; Section 5 presents the validity threats of this work;
finally, in Section 6 we present the discussion and conclusion of
our results and we present our acknowledgments in Section 7.

2 Related work
Recently, Software Engineers have had an interest in the use of
ontologies to identify and share knowledge on the different phases
of the software development cycle as presented in the works by
Bathia et al. [29] and de Souza et al. [30]. In the literature, we can
find different methodologies to develop ontologies including
Diligent [31], On-To-Knowledge [32], Neon [33], OntoDocMan
[34] and Methontology Framework [35], where each one follows a
different approach.

The Methontology Framework is widely used because its
resemblances the software development process in software
engineering. Since the approach is focused on software
engineering, it will easy to follow by software developers. Some
authors refer to the Methontology Framework, e.g. an ontology
was developed to represent college graduation screening process
[36], the development of STIFIn Ontology Finger Personality
Solution [37], among others.

The Methontology Framework consists of the following phases:
(i) Specification: identification of the domain, goal, relevant terms,
and objectives; (ii) Conceptualisation: creates a glossary of terms
and from this create a taxonomy; and (iii) Formalisation: creates a
formal computational model using a tool (e.g. Protégé [38]).

Previous to the ontology development, we conducted a
literature review of ontologies in the software development
process. The ontologies found during the literature review have
addressed some problems related to some specific development
phase. These are: Requirements, Design, Implementation, Testing
and Maintenance. These phases are the same regardless of the
methodology used and are known as the software development life
cycle [39, 40].

Table 1 shows the ontologies found as a result of a literature
review. These ontologies were classified based on the software
development cycle phase in which they are focus and how much
progress they achieve based on the Methontology Framework.
Almost all the ontologies work on the requirements phase,
targeting activities such as requirement analysis. In [41–45]
proposals seek to enhance the software quality by improving the
elicitation and administration of the user's needs. Their objective
was to eliminate ambiguities and language mistakes. Additionally,
they elicit the requirements in a faster way and obtain an output in
different formats (e.g. UML, data models, and diagrams).

Another activity performed in the requirements phase is effort
estimation. Hamdan et al. [50] seek to eliminate mistakes or

Fig. 1  Initial state is q0, which represent the need of expertise to solve a
doubt or problem, and q5 is the final state, representing when a doubt or
problem was solved

Table 1 Ontologies supporting software development
activities
Stage/
Ontology

Specification Conceptualisation Formalisation

requirements documentation
of experiments
in distributed
software [46]

documentation of
term and concepts in

GSD [47, 48]

human
resources
assign [26]

sutomatic
software

documentation
[49]

effort Estimation [50] effort estimation
[51]

software
requirements

[42, 43]

documentation of
terms and concepts

in multisite
development [52, 53]

software
requirements
[41, 44, 45]

documentation for
task allocation [54]

documentation
to support
distributed
teams [5]

software
measurement [27]

service management
[55]

design modelling software
process [56]

coding
testing
maintenance knowledge

management
[28]

software
artefacts

traceability [57]

IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

235

misunderstandings through the use of ontologies in a system,
which enables project managers to obtain characteristics and terms
of previous projects. Adnan and Afzal [51] present an ontology for
knowledge about effort estimation, which has the objective of
mitigate problems of distributed teams (e.g. inaccurate estimation
of effort and time) by making an estimation based on previous
projects. Pre-established terms are used to describe the project.

Documentation is another activity addressed in the requirements
phase. Rocha and Meira [46] present a literature review of
ontologies focused on documentation in distributed software
development (DSD). Their objective is to propose a
recommendation system, based on the issues founded in the
literature review. Addressing the same activity, Bathia et al. [49]
present a conceptual description of an ontology, to get automatic
documentation through a system that uses an ontology. This
ontology establishes terms and concepts to be used across projects.
There are ontologies which work with documentation activities
[47, 48, 52, 53, 58], which try to create a semantic (generalised
interpretation) between concepts and terms used either in Global
Software Development (GSD) or DSD. Their objective is to
describe GSD o DSD projects.

Finally, Marques et al. [54] present an ontology to document
task allocation in distributed software development teams. This
ontology offers a reference to concepts and terms used in
distributed software development, and also tasks and information
of the developers (e.g. projects, country, time zone, experience).

Another activity included in the requirements phase is human
resources assign. Paredes-Valverde et al. [26] present an ontology
that broadly describes user data (developers). The aim is to assign
developers into projects according to their experience and the
needs of the project. On the other hand, Fonseca et al. [27] present
an ontology for software measurement activity (e.g. measure
source code, effort estimation, number of sprints). This ontology
aims to unify the outputs of different tools that measure software.
The goal was to have a better measurement using the data from all
the measurement tools. Finally, Valiente et al. [55] present an
integration model between Software Engineering and technology
administration service. This model uses an ontology to integrate
terms and concepts involved within these areas. The purpose was
to make clear to the client his options, and the client's needs to the
developer.

Regarding the design phase, Martinho et al. [56] present an
ontology for modelling software processes. The ontology was
designed using knowledge modelling tools (Cmpas &
CmapsTools). The ontology is focused on the project flexibility
design (information that the developers want to use based on their
experience).

Finally, in the maintenance phase, Serna and Serna [28] present
a conceptual analysis of applying ontologies for knowledge
management in the maintenance phase during software
development. Instead of conceptual analysis, Zhang et al. [57]

present a maintenance ontology for tracking artefacts to link them
with the software requirements, with the main purpose of
differentiate a code mistake from a requirement mistake.

Undoubtedly, there are many software development activities
that can be benefited with the support of ontologies, but most of
these have not been formalised, in consequence, these ontologies
are not properly appreciated. In Table 1, it can be noticed that there
exists an area of opportunity to build ontologies in the testing and
coding phases. Particularly, an ontology in coding phase could
bring several benefits, such as support to the expertise location by
generating concepts and terms of the knowledge in this phase with
the purpose of linking the artefacts with their provider.
Furthermore, the ontology could generate knowledge
representation, this representation will help to identify resources
used in a project and their providers. In this way, the information
(expertise) will be more accessible, which will reduce the time
invested in the expertise location process (see Fig. 1). In addition to
this, most of the work presented in this section is not focused on
the code phase. In some cases, these ontologies are presented as a
conceptual model.

The next section presents the formal methodology that was used
to define our ontology.

3 Method
This research followed the Methontology Framework [35] which is
an accepted methodology to define the development life cycle in
Ontological Engineering (from requirements specification to
maintenance). The Methontology Framework life cycle (Fig. 2)
includes five phases: (i) Specification; (ii) Conceptualisation; (iii)
Formalisation; (iv) Evaluation; and (v) Maintenance. The next
subsections describe the phases and activities needed for the
development of our ontology.

3.1 Specification phase

Specification phase establishes a document covering the ontology's
purpose (i), scope (ii), implementation language (iii), intended
End-Users (iv) and Intended Uses (v). This document is done by
doing the following task.

3.1.1 Knowledge acquisition activity: In software development,
the key to project success lies in the software specification [39].
Suarez-Figueroa et al. [59] present guidelines based on the use of
the Competency Questions (CQ) and the existing methodologies to
build ontologies. These guidelines help to capture knowledge from
users and to produce the Ontology Requirement Specification
Document (ORSD). The ORSD document helps to identify the
knowledge that the ontology contains, and it is useful to define the
requirements the ontology must cover.

Fig. 2  Methontology Framework life cycle

236 IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http://creativecommons.org/licenses/by-nc-nd/3.0/)

For the knowledge acquisition activity, we come up with three
approaches: (i) interviews; (ii) focus group; (iii) survey form.
Three different groups were selected to cover different approaches.
The participants were developers from different organisations (e.g.
software organisations and organisations with a software developer
department).

The first approach carried out was the interviews, the objective
was to know the way developer teams work, (e.g. communication,
challenges or problems). The interviews contained questions
related to general information (role, activities and organisation),
project administration, version control, coordination and team
mindset.

The objective of the focus group was to know the process of
searching for expertise within the software development teams
either to store it or to share it, as well as the process of finding an
expert for consulting. The participants were asked about the
process of individual search, knowledge sharing and expert search.

Finally, the last approach, survey form, was applied to group
developers. The objective was to obtain examples of problem or
doubts that the developers usually try to solve. The survey contains
the following fields: search keywords, type of search (expert or
artefacts) and time invested trying to solve a doubt or problem.

3.2 Conceptualisation phase

Once all the needed knowledge has been acquired, it must be
organised. Conceptualisation phase is focused on organising and
structuring the acquired knowledge using external representations
(e.g. UML, IDEF5) which are independent of the ontology
implementation languages. The organising and structuring tasks are
as follows.

3.2.1 Integration activity: To avoid redundant information, it
must be considered the reuse of ontologies (definitions already
built). The Ontologies were consulted in the following databases:

• Swoogle [60].
• DAML Ontology Library [61].
• ONKI Ontology Library Service [62].
• Linked Open Vocabularies [63].

These databases were searched on the internet and some of them
are the most commonly cited in research articles available. In
addition, we searched for ontologies of the same domain in
academic databases (e.g. IEEE Xplore, ScienceDirect), like the one
trying to build in this work in academic databases.

3.2.2 Knowledge modelling activity: This task consists of storing
statements about facts by building meaningful information
structures through multiple representations (e.g. mind maps).

3.3 Formalisation phase

Formalisation phase converts a conceptual model (taxonomy) to a
formal model (computable). Specifically, for this work we took the
taxonomy created in the conceptualisation phase, it was converted
using to a computation model using Protégé tool [38]. This activity
is known as Implementation activity.

3.4 Evaluation phase

In the traditional Methontology Framework the evaluation is
considered as an activity which is carried out during all the phases.
In our work, this activity is considered as another phase in the
proposed methodology, which consists of carrying out a technical
judgement of the ontology, according to the ORSD, by doing the
following tasks.

3.4.1 Verification activity: This activity is a technical process
which is done to guarantee the correctness of the ontology,
according to the specification requirements. The verification
activity was being done using the Pellet plugin reasoner on

Protégé. An ontology reasoner is a piece of software able to infer
logical consequences from a set of asserted facts or axioms.

3.4.2 Validation activity: It is the process done to ensure that the
ontology fulfils the purpose for which it was built. The validation
was being done by using CQ [64], which consists in a set of
questions defined in the ORSD in a natural language, the ontology
must answer these questions correctly. The CQs were based on the
survey form that the developers fill with examples of doubts of
problems that they try to solve.

Finally, at the end of all the phases, there is the maintenance
phase, which consists of tasks covering from erasing obsolete
instances or adding new ones over time. This phase was considered
because the scope of we were focused only on ontology
development.

4 Results
Here, we present our results obtained by following the phases and
activities defined above.

4.1 Specification phase results

The knowledge acquired was collected following three approaches:
interview, focus group and survey form (see Section 3.1). In the
interview participated 6 developers and 2 project managers from 6
different software development companies. In the focus group
participated 4 developers and 1 designer from the same company.
Finally, in the survey form participated 12 developers from 3
different companies.

The data were extracted from the interviews, focus group and
survey from using affinity diagrams, which is a tool that
synthesises a set of verbal data (e.g. ideas, opinions, expressions)
grouping them according to the relationship they have with each
other. This process begins with the transcription of the interviews
to find the key data of the participants’ responses. From that, the
data of the answers that appeared most recurrently were classified.
Later we continue with the analysis of the data to identify the
relationships between the processes of the search for expertise.
Finally, from the affinity diagram and the defined categories,
conclusions were obtained. With the collected information as part
of the specification phase, we create a document following the
ORSD guidelines. Table 2 shows a fragment of the developed
ORSD.

4.2 Conceptualisation phase results

As a result of the integration task, it was not found any ontology
with the same domain as the one trying to build in this work,
neither in ontology databases nor in the literature review.

Table 2 ORSD Fragment
Ontology Requirements Specification Document Template
1 Purpose
the integration of the artefacts, projects and experts in the code
phase of the software development process
2 Scope
the ontology has a focus just on the code phase of the software
development process domain. The level of granularity is directly
related to the competency questions and terms defined
3 Implementation Language
the ontology must be implemented in OWL language using protégé
ontology tool.
4 Intended End-Users
user 1. Programmer searching for resources to solve a problem
(e.g. requirements, bugs, or doubts with a process)
user 2. Programmer searching for an expert to ask for help
user 3. Programmer searching for information about a project and
his participants
user 4. Programmer updating or registering his expertise (projects
or resources)

IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

237

Based on the terms and concepts identified from interviews,
focus and a survey form, we created a taxonomy (see Fig. 3).

Fig. 3 shows a taxonomy of the knowledge produced in the
code phase of the software development (programming
knowledge). The main elements of the taxonomy are (i) profile; (ii)
projects; and (iii) artefacts.

The Profile entity represents a description of a programmer in
an organisation with information such as name, role, skills, projects
has worked or is working currently. The Project entity represents
information about the developer's current project. In this way, you
can know the developers’ skills based on the project history and the
artefacts used in those projects. So, developers create artefacts by
working on projects, and those are used by others to solve
problems.

In summary, programmers have a profile and work assigned in a
project, which is developed in a certain platform (e.g. web,
database, desktop and mobile) which has layers (e.g. backend and
frontend) and a programming language (e.g. JavaScript).

4.3 Formalisation phase results

Protégé tool [38] was used to convert the conceptual model to a
computable model. This tool uses Ontology Web Language (OWL)
[65] to define an Ontology.

Using the taxonomy (see Fig. 3), we defined the classes’ names
(in OWL, classes are interpreted as a set of individuals or objects),
properties, and instances. The principal class that represents a set
of all individuals is ‘Thing’, thus all classes are subclasses of that
one (see Fig. 4). Fig. 4 shows the main classes of our ontology:
Team, Artefacts, Project, Layers. Team class represents a developer
team in an organisation. Artefact class represents the resources
used by developers to solve a doubt or a problem. Project class
represents a description of the work and activities done by
developers.

In conclusion, developers (members of a Team class) work in a
Project in an organisation, and when a developer has a doubt or
problem uses Artefacts.

Properties in OWL represent a relationship between two
individuals. There are two types of properties: object and data type
properties. The object properties link an individual to another
individual. The datatype properties link an individual to a data
value expressed in Extensible Markup Language (XML) or
Resource Description Framework.

The properties defined to our ontology are shown in Table 3.
The property ‘isUsedBy’ help to link a programmer (a subclass of a
team class) to the artefacts that have been used to solve problems
or doubts in a project. The ‘isMemberOf’ and ‘hasWorked’
property helps to identify in which Programmer has worked or
which project is currently working on. The properties ‘IsMadeBy’
and ‘hasUsedIn’ help to identify who creates an artefact and in
which project was created or used.

4.4 Evaluation phase results

In the aim to perform the evaluation, the ontology must be
populated by creating instances. This process usually involves
linking data to the elements of the ontology. The instances were
created from the participants’ data.

As part of the verification activity, we used the Pellet reasoner.
No incongruence or inconsistency was found in the ontology, when
it was analysed with the reasoner (see Fig. 5).

In the case of the validation activity, the CQ (see Table 4) were
used. Before that, questions must be transformed into a computer
language, using the Manchester OWL syntax [66] to translate the
questions in natural language into a computer language applied in
Protégé.

Table 4 shows the questions designed to query in the validation
activity. The questions are divided into two groups: (a) Expert
seeking; (b) Artefact seeking. Due to the two types or searches
done to solve a doubt or problem (see Fig. 1). You can either look
for a resources (artefacts) or look for an expert the recommends
you an artefact.

Fig. 6 presents a description of a scenario application used in
the evaluation phase.

Fig. 7 shows an example of instances created during the
ontology population. These instances represent a scenario of a

Fig. 3  Taxonomy of Knowledge Expertise in code phase

Fig. 4  Coding phase expertise ontology: screenshot of main classes
developed in Protégé

Table 3 Ontology properties, ranges and domains
Property Inverse Type Domain Range
isUsedBy hasUsed functional artefacts programmer
isMemberOf N/A functional programmer projects
isMadeBy hasMadeBy functional artefacts programmer
hasWorked N/A functional programmer projects
hasUsedIn N/A functional artefacts projects
isBasedOn N/A functional projects layers

Fig. 5  Pellet reasoner output

238 IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http://creativecommons.org/licenses/by-nc-nd/3.0/)

programmer working in an organisation. Omar represents an
instance from the Programmer subclass, Project_One an instance
from the Project class, and all the resources are instances from the
Artefacts class. Omar is currently working on Project_One and has
used many resources (artefacts) to solve doubts or problems in the
project.

Fig. 8 presents an example of a question done in Protégé during
the validation activity. In this case, the object properties link the
resources that Omar used in the Project_One. In this way, Ana
could reuse the resources used by Omar, since Omar's resources
will be associated with him and the project in which he used them.

5 Threats to validity
This study considers threats to the internal, external and conclusion
validities [67].

Internal validity refers to the capacity to repeat the same
behaviour on a new experiment considering the same participants.
Communication and information sharing between participants is
the main threat, which was mitigated by sending a survey form to
the participants, to obtain examples or doubts and problems that the
developers usually try to solve. Thus, the participants could fulfil
anytime during the day. In addition, none of the participants had a
previous relation or interest conflict with the researchers.

The external validity refers to the capacity to repeat the same
behaviour considering other participants. To minimise this threat
must be considered the different methodologies and technologies
applied by the software organisations. In this sense, the study
considered different software organisations to cover different
technologies and programming languages (e.g. industrial
organisation with software development area).

Finally, regarding the conclusion validity, the obtained results
cannot be generalised and must be viewed as preliminary results.
This research aims to establish a base that could be used for other
researchers to explore the development of ontologies for the coding
phase in the software development process.

Table 4 Competency Questions in natural language
Competency Questions (CQs)
CQG1(Expert seeking)
CQ1. In which projects ‘developer name’ has been worked?
CQ2. In which language ‘developer name’ programs?
CQ3. Developers with skills on Java?
CQ4. Which resources has been used by ‘developer name’?
CQG2(Artefact seeking)
CQ1. Resources for web developing?
CQ2. Resources used in ‘name’ project?
CQ3. Resources used by ‘developer name’ in ‘name’ project?

Fig. 6  Scenario description

Fig. 7  Ontology instances example

Fig. 8  Competency Question example with Manchester OWL Syntax in Protégé

IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

239

6 Discussion
Some relevant aspects related to this work that are important to
discuss are: (i) the methodology followed to develop the presented
ontology; (ii) research impact; (iii) the research implications; and
(iv) practical implications:

(i) This research presents an adaptation of the original version of
the Methontology Framework, where we include a new phase,
evaluation phase. Originally the Methontology Framework
considers the evaluation as a task, across all its phases (see Fig. 2),
because strictly speaking it does not fully describe the process of
evaluation. In this sense, the new phase brings several benefits
such as a more comprehensive process to the software engineers,
because it resemblance the software development life cycle. Our
new phase describes the use of a reasoner to perform a verification
of the ontology and CQ to do the validation task.
(ii) The followed methodology was useful to identify and classify
the works found, the objective was to measure the progress of the
work based on the Methontology development cycle, which allows
us to find a gap in the code phase of software development and also
helped us to compare our work with the literature. Current works
mainly covered the specification as in the of the [28] where they
present a list of guidelines for ontology development, they only
identify terms and concepts which involves results only of the first
phase of the followed methodology, other works such as in [50]
where an ontology (taxonomy) is presented, however, this model
was not translated into an ontology language. A few works such as
[41, 44, 45] formalise the ontology, which means that the
taxonomy or knowledge model domain was converted into an
ontology language. In this sense, our work presents a validated
ontology for the coding phase of the software development
process, which a phase not addressed by any of the works that
achieve the formalisation phase.
(iii) The main research implication of this work is the knowledge
condensation through ontologies because previous research has
modelled knowledge condensation empirically [13]. Therefore, our
work established terms and concepts to work with ontologies in the
coding phase of the software development cycle, so this ontology
could help to condensate the knowledge by sharing terms and
concepts of how to capture and classify the knowledge. Moreover,
since the process of development and validation of ontology is
described, other researchers or developers can follow our process
to develop their ontology.
(iv) The practical implication is that the developers can use the
presented ontology for the development of a knowledge expertise
system, similarly to the entity relation model in databases. This
system could manage the sources used by the developers to solve
problems or doubts, so the ontology will serve as a reasoner about
a developer expertise need, see the query in Fig. 8. The resources
will be stored according to the terms and concepts established in
the ontology.

7 Conclusions
In this work, we addressed the expertise location problem to reduce
architectural knowledge vaporisation in the software development
lifecycle, through an ontology obtained over interviews, a focus
group and a survey form. The ontology links the artefacts
(resources) with his creators (provider) and with the project where
it was used. We identified works that reported ontologies that
support different activities or phases in software development,
however, these works do not follow a specific methodology to
develop ontologies. On the other hand, we found some works that
present an ontology based on a literature review, this means that
neither those have a formal approach to developing an ontology
nor an adequate evaluation. Consequently, some of the found
ontologies are not formalised, it means that the model presented on
the works found is not ready to take advantage in a system.

Our proposal presents a description of the development process
of an ontology (formalised) including their evaluation, it means
that the model is ready to implement in a system. The main
contributions of this work are the support to expertise location

through an ontology that can link the information about
programmers or any member of a team with the resources used in a
project. Therefore, the developer will be able to identify the
provider or the source of an artefact, or developers with the
knowledge to solve problems or doubts in a specific domain. It will
mitigate the time wasted trying to find solutions to solve problems
or doubts, consequently, the knowledge reuse will help to reduce
the architectural knowledge vaporisation.

In this sense, another contribution is the approach of knowledge
condensation concept is presented using ontologies. In the work of
Borrego et al. [13] the knowledge condensation is presented, as
well as a technological implementation of the same concept, where
the knowledge classification is carried out through a mechanism of
semi-fixed social tagging. It is referred as semi-fixed because
developers could use any tag, but it must be related to a fixed meta-
tag of a classification scheme (similar to a taxonomy), which was
obtained through various empirical studies. Thus, knowledge
classification is not based on a formal process to develop
ontologies. In this paper, we present the first efforts of an
implementation of the knowledge condensation concept, where the
classification mechanism is based on an ontology formally
obtained and validated. In consequence, using an ontology enable
automated reasoning about architectural knowledge (artefacts and
experts), reasoning with concepts and relationships similar to the
way humans perceived interlinked concepts and a model that
evolves with grow of data without affecting processes. As future
work, this ontology will serve as the language to enable automated
reasoning about high-level knowledge (expertise) according to the
needs of developers trying to solve problems or doubts.

8 Acknowledgments
This work was partially supported by different scholarships granted
by the Mexican Institutions of PRODEP and by the National
Council of Science and Technology (whose acronym in Spanish is
Conacyt) of Mexico, with scholarship number 616574 for the first
author.

The authors are grateful to the participating companies: SASA,
CECSO, IBM, SOA Software Factory, EMCORE, for the support
provided to conduct the present study, and for their willingness to
continue working with us in future projects.

9 References
[1] Lindvall, M., Rus, I.: ‘Knowledge management for software Organizations',

in ‘Managing software engineering Knowledge' (Springer Berlin Heidelberg,
Berlin, Heidelberg), 2003, pp. 73–94

[2] Bjørnson, F.O., Dingsøyr, T.: ‘Knowledge management in software
engineering: a systematic review of studied concepts, findings and research
methods used’, Inf. Softw. Technol., 2008, 50, (11), pp. 1055–1068.

[3] van Vliet, H.: ‘Knowledge sharing in software development', 2010, pp. 2–2.
[4] Becerra-Fernandez, I., Sabherwal, R.: ‘Knowledge management: systems and

processes' (Routledge, london, UK, 2014).
[5] Jedlitschka, A., Ciolkowski, M., Denger, C., et al.: ‘Relevant information

sources for successful technology transfer: a survey using inspections as an
example'. First Int. Symp. on Empirical Software Engineering and
Measurement (ESEM 2007), Madrid, Spain, 2007, pp. 31–40

[6] Sharif, K.Y., Buckley, J.: ‘Observation of open source programmers’
information seeking'. 2009 IEEE 17th Int. Conf. on Program Comprehension,
Vancouver, Canada, 2009, pp. 307–308.

[7] Zagalsky, A., German, D.M., Storey, M.-A., et al.: ‘How the R community
creates and curates knowledge: an extended study of stack overflow and
mailing lists’, Empir. Softw. Eng., 2018, 23, (2), pp. 953–986.

[8] Voas, J.: ‘A baker's dozen: 13 software engineering challenges’, IT Prof..,
2007, 9, (2), pp. 48–53

[9] Rupakheti, C.R., Hou, D.: ‘Satisfying programmers’ information needs in
API-based Programming'. 2011 IEEE 19th Int. Conf. on Program
Comprehension, Kingston, Canada, 2011, pp. 250–253

[10] Ericsson, K.A., Prietula, M.J., Cokely, E.T.: ‘The making of an expert’, Harv.
Bus. Rev., 2007, 52, pp. 115–121.

[11] ‘Manifesto for Agile Software Development.’ [Online]. Available at: https://
agilemanifesto.org/. [Accessed: 30-Apr-2019].

[12] Noordeloos, R., Manteli, C., Van Vliet, H.: ‘From RUP to scrum in global
software development: a case study'. 2012 IEEE Seventh Int. Conf. on Global
Software Engineering, Porto Alegre, Brazil, 2012, pp. 31–40.

[13] Borrego, G., Morán, A.L., Palacio, R.R., et al.: ‘Towards a reduction in
architectural knowledge vaporization during agile global software
development’, Inf. Softw. Technol., 2019, 112, pp. 68–82

[14] Uikey, N., Suman, U., Ramani, A.K.: ‘A documented approach in Agile
software development', 2011

240 IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http://creativecommons.org/licenses/by-nc-nd/3.0/)

https://agilemanifesto.org/
https://agilemanifesto.org/

[15] Holz, H., Melnik, G., Schaaf, M.: ‘Knowledge management for distributed
agile processes: models, techniques, and infrastructure'. WET ICE 2003. Proc.
Twelfth IEEE Int. Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Linz, Austria, 2003, pp. 291–294

[16] Edwards, J.S.: ‘Managing software engineers and their knowledge', in
‘Managing software engineering knowledge' (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003), pp. 5–27

[17] McDonald, D.W., Ackerman, M.S.: ‘just talk to me'. Proc. of the 1998 ACM
Conf. on Computer supported cooperative work - CSCW ‘98, Seattle, WA,
USA, 1998, pp. 315–324

[18] Borrego, G., Moran, A.L., Palacio, R., et al.: ‘Understanding architectural
knowledge sharing in AGSD teams: an Empirical Study'. 2016 IEEE 11th Int.
Conf. on Global Software Engineering (ICGSE), Irvine, CA, USA, 2016, pp.
109–118.

[19] Babar, M. A.: ‘Supporting the software architecture process with knowledge
Management', in ‘Software architecture knowledge management' (Springer
Berlin Heidelberg, Berlin, Heidelberg, Germany, 2009), pp. 69–86.

[20] Rus, I., Lindvall, M.: ‘Knowledge management in software engineering’,
IEEE Softw.., 2002, 19, (3), pp. 26–38

[21] Bosch, J.: ‘Software architectue: the next step', in Oquendo, F., Warboys, B.,
(Eds.): ‘Lecture notes in computer science' (Springer Berlin Heidelberg,
Germany, 2004), pp. 194–199

[22] Bin Ali, N.: ‘Is effectiveness sufficient to choose an intervention?:
considering resource use in empirical software engineering'. Int. Symp. on
Empirical Software Engineering and Measurement, Ciudad Real, Spain, 2016,
vol. 08-09-September-2016

[23] Gruber, T.R.: ‘Toward principles for the design of ontologies’, Int. J. Hum.
Comput. Stud., 1995, 43, (5), pp. 907–928.

[24] Shiang, C.W., Tee, F.S., Halin, A.A., et al.: ‘Ontology reuse for multiagent
system development through pattern classification’, Softw. - Pract. Exp.,
2018, 48, (11), pp. 1923–1939

[25] Noy, N.F., Mcguinness, D.L.: ‘Ontology development 101: aGuide to creating
your first ontology’, 2001

[26] Paredes-Valverde, M.A., Salas-Zárate, M.d.P., Colomo-Palacios, R., et al.:
‘An ontology-based approach with which to assign human resources to
software projects’, Sci. Comput. Program., 2018, 156, pp. 90–103

[27] Fonseca, V.S., Barcellos, M.P., de Almeida Falbo, R.: ‘An ontology-based
approach for integrating tools supporting the software measurement process’,
Sci. Comput. Program., 2017, 135, pp. 20–44

[28] Serna, M.E., Serna, A.A.: ‘Ontology for knowledge management in software
maintenance’, Int. J. Inf. Manage., 2014, 34, (5), pp. 704–710.

[29] Bhatia, M.P.S., Kumar, A., Beniwal, R.: ‘Ontologies for software engineering:
past, present and future’, Indian J. Sci. Technol., 2016, 9, (9), pp. 1–16,

[30] de Souza, P.L., do Prado, A.F., de Souza, W.L., et al.: ‘Improving Agile
software development with domain ontologies' (Springer, Cham, 2018), pp.
267–274

[31] Casanovas, P., Casellas, N., Tempich, C., et al.: ‘OPJK and DILIGENT:
ontology modeling in a distributed environment’, Artif. Intell. Law, 2007, 15,
(2), pp. 171–186.

[32] Sure, Y., Staab, S., Studer, R.: ‘on-To-knowledge methodology (OTKM)', in
‘Handbook on ontologies' (Springer, Berlin Heidelberg, 2004), pp. 117–132

[33] Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: ‘The neon
methodology for ontology engineering', in ‘Ontology engineering in a
networked world' (Springer, Berlin Heidelberg, 2012), pp. 9–34

[34] Castillo-Barrera, F.E., Durán-Limón, H.A., Médina-Ramírez, C., et al.: ‘A
method for building ontology-based electronic document management
systems for quality standards - the case study of the ISO/TS 16949:2002
automotive standard’, Appl. Intell., 2013, 38, (1), pp. 99–113.

[35] Fernández-López, M., Gómez-Pérez, A., Juristo, N.: ‘METHONTOLOGY:
from ontological art towards ontological engineering'. Proc. Ontological
Engineering AAAI-97 Spring Symp. Series, Palo Alto, CA, USA, 24-26
March 1997,

[36] Park, J., Sung, K., Moon, S.: ‘Developing graduation screen ontology based
on the METHONTOLOGY approach'. Proc. - 4th Int. Conf. on Networked
Computing and Advanced Information Management, NCM 2008, Gyeongju,
South Korea, 2008, vol. 2, pp. 375–380

[37] Nur Husna, M.H., Zakaria, Z.: ‘The development of STIF in ontology based
on the methontology Approach', UTM Comput. Proc. Innov. Comput. Technol.
Appl., 2017, 2, pp. 1–7

[38] ‘protégé.’ [Online]. Available at: https://protege.stanford.edu/. [Accessed: 13-
May-2019].

[39] Sommerville, I.: ‘Software engineering' (Pearson, London, UK, 2016, 10th
edn.).

[40] Pressman, R.S.: ‘Software engineering: a practitioner's approach' (McGraw-
Hill, New York, USA, 2014).

[41] Hovorushchenko, T., Pavlova, O.: ‘Evaluating the software requirements
specifications using ontology-based intelligent Agent'. 2018 IEEE 13th Int.
Scientific and Technical Conf. on Computer Sciences and Information
Technologies (CSIT), Lviv, Ukraine, 2018, pp. 215–218

[42] Bhatia, M.P.S., Kumar, A., Beniwal, R.: ‘Ontology based framework for
detecting ambiguities in software requirements specification'. Int. Conf. on
Computing for Sustainable Global Development (INDIACom), New, Delhi,
India, 2016.

[43] Sitthithanasakul, S., Choosri, N.: ‘Using ontology to enhance requirement
engineering in agile software process'. 2016 10th Int. Conf. on Software,
Knowledge, Information Management & Applications (SKIMA), Chengdu,
China, 2016, pp. 181–186.

[44] Murtazina, M.S., Avdeenko, T.V.: ‘An ontology-based approach to support for
requirements traceability in Agile development’, Procedia Comput. Sci.,
2019, 150, pp. 628–635.

[45] Khatoon, A., Motla, Y.H., Azeem, M., et al.: ‘Requirement change
management for global software development using ontology'. 2013 IEEE 9th
Int. Conf. on Emerging Technologies (ICET), Islamabad, Pakistan, 2013, pp.
1–6

[46] Rocha, R.G.C., Meira, S.: ‘DSDK: an Ontology-based system to explore
distributed software development Experiments'. 2012 IEEE Seventh Int. Conf.
on Global Software Engineering Workshops, Porto Alegre, Brazil, 2012, pp.
73–75

[47] Vizcaíno, A., García, F., Caballero, I., et al.: ‘Towards an ontology for global
software development’, IET Softw.., 2012, 6, (3), p. 214

[48] Vizcaíno, A., García, F., Piattini, M., et al.: ‘A validated ontology for global
software development’, Comput. Stand. Interfaces, 2016, 46, pp. 66–78.

[49] Bhatia, B.M.P.S., Kumar, A., Rohit, : ‘Ontology based framework for
automatic software's documentation'. Int. Conf. on Computing for Sustainable
Global Development, New Delhi, India, 2015.

[50] Hamdan, K., Khatib, H., Moses, J., et al.: ‘A software cost ontology system
for assisting estimation of software project effort for use with case-based
Reasoning'. 2006 Innovations in Information Technology, Dubai, UAE, 2006,
pp. 1–5.

[51] Adnan, M., Afzal, M.: ‘Ontology based multiagent effort estimation system
for scrum Agile method’, IEEE Access, 2017, 5, pp. 25993–26005.

[52] Wongthongtham, P., Chang, E., Dillon, T.S., et al.: ‘Ontology-based multi-site
software development methodology and tools’, J. Syst. Archit., 2006, 52, (11),
pp. 640–653.

[53] Wongthongtham, P., Chang, E., Dillon, T., et al.: ‘Development of a software
engineering ontology for multisite software development’, IEEE Trans.
Knowl. Data Eng., 2009, 21, (8), pp. 1205–1217.

[54] Marques, A.B., Carvalho, J.R., Rodrigues, R., et al.: ‘An ontology for task
allocation to teams in distributed software Development'. 2013 IEEE 8th Int.
Conf. on Global Software Engineering, Bari, Italy, 2013, pp. 21–30.

[55] Valiente, M.-C., Garcia-Barriocanal, E., Sicilia, M.-A.: ‘Applying ontology-
based models for supporting integrated software development and IT service
management processes’, IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.),
2012, 42, (1), pp. 61–74.

[56] Martinho, R., Varajão, J., Domingos, D.: ‘Using the semantic web to define a
language for modelling controlled flexibility in software processes’, IET
Softw.., 2010, 4, (6), p. 396,

[57] Zhang, Y., Witte, R., Rilling, J., et al.: ‘Ontological approach for the semantic
recovery of traceability links between software artefacts’, IET Softw.., 2008,
2, (3), p. 185,

[58] Rocha, R., Araujo, A., Cordeiro, D., et al.: ‘DKDOnto: an Ontology to
support software development with distributed teams’, Procedia Comput. Sci.,
2018, 126, pp. 373–382.

[59] Suárez-Figueroa, M.C., Gómez-Pérez, A., Villazón-Terrazas, B.: ‘How to
write and use the ontology requirements specification Document'. Proc. of the
Confederated Int. Conf.s, CoopIS, DOA, IS, and ODBASE 2009 on On the
Move to Meaningful Internet Systems: Part II, Vilamoura, Portugal, 2009, pp.
966–982.

[60] ‘Swoogle.’ [Online]. Available at: http://swoogle.umbc.edu/2006/. [Accessed:
11-Apr-2019]

[61] ‘DAML Ontology Library.’ [Online]. Available at: http://www.daml.org/
ontologies/. [Accessed: 11-Apr-2019]

[62] ‘ONKI Ontology Library Service.’ [Online]. Available at: https://onki.fi/en/.
[Accessed: 11-Apr-2019]

[63] ‘Linked Open Vocabularies (LOV).’ [Online]. Available at: https://
lov.linkeddata.es/dataset/lov/. [Accessed: 11-Apr-2019]

[64] Bezerra, C., Freitas, F., Santana, F.: ‘Evaluating ontologies with competency
Questions'. 2013 IEEE/WIC/ACM Int. Joint Conf.s on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT), Atlanta, GA, USA, 2013, pp. 284–
285

[65] ‘OWL Web Ontology Language Overview.’ [Online]. Available at: https://
www.w3.org/TR/owl-features/. [Accessed: 30-May-2019]

[66] Horridge, M., Patel-Schneider, P.F.: ‘Manchester OWL Syntax', 2007.
[Online]. Available at: https://www.w3.org/TR/owl2-manchester-syntax/.
[Accessed: 06-Aug-2019].

[67] Barros, M.d.O., Neto, A.C.D.: ‘Threats to validity in search-based software
engineering empirical studies’, RelaTe-DIA 5.1, 2011, 5, (1), pp. 1–11

IET Softw., 2020, Vol. 14 Iss. 3, pp. 234-241
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

241

https://protege.stanford.edu/
http://swoogle.umbc.edu/2006/
http://www.daml.org/ontologies/
http://www.daml.org/ontologies/
https://onki.fi/en/
https://lov.linkeddata.es/dataset/lov/
https://lov.linkeddata.es/dataset/lov/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl2-manchester-syntax/

A Social Network to Increase Collaboration and Coordination in
Distributed Teams

Aurora Vizcaíno1, Pedro Garrido1, Ramón R. Palacio2, Alberto L. Morán3, Mario Piattini1

1 Universidad Castilla-La Mancha, Grupo de Investigación Alarcos,
España

2 Instituto Tecnológico de Sonora, Unidad Navojoa,
Mexico

3 Universidad Autónoma de Baja California, Facultad de Ciencias-Ensenada,
Mexico

{aurora.vizcaino, mario.piattini}@uclm.es, pedro8853@hotmail.com,
ramon.palacio@itson.edu.mx, alberto.moran@uabc.edu.mx

Abstract. Trust is one of the key factors involved in

determining the success or failure of any project.
However, achieving and maintaining trust in distributed
projects when team members are geographically,
temporally and culturally distant from each other is a
considerable challenge. In this paper, we present Trusty,
a tool designed to help develop trust in Virtual Teams.
The tool is explained by using a schema of
trustworthiness, and an indication of how the tool
supports some features of these schema in order to
foster the development of trust is therefore provided.
Users have also evaluated the tool, and the results of
this evaluation are presented here.

Keywords. Global software development,

trustworthiness, virtual teams.

1 Introduction

The last few decades have witnessed a steady,
irreversible trend towards the globalisation of
business. Economic forces are relentlessly turning
national markets into global markets and spawning
new forms of competition and cooperation that
reach across national boundaries. This change is
having a profound impact on not only marketing
and distribution, but also the way in which products
are conceived, designed, constructed, tested, and
delivered to customers [1].

Companies are therefore expanding globally,
and are distributing their teams around the world

by a variety of means such as acquisitions,
partnerships, and outsourcing. As globalisation
becomes more prevalent, many companies are
evolving their approach and practices, and thus
perhaps demonstrating the maturity of the
distributed model. It is the age of Virtual Teams
(VTs), in which members use technology to
interact with one another across geographic,
organisational, and other boundaries [2]. VTs can
be composed of the best individuals for the task
regardless of their physical or organisational
location, thus enhancing the quality of decisions
[3]. Furthermore, in order to attract and retain
employees, and knowledge workers in particular,
organisations are increasingly offering their
employees remote working options [4]. Overall,
VTs provide an effective structural mechanism with
which to handle the increased travel, time,
coordination, and costs associated with bringing
together geographically, temporally, and
functionally dispersed employees to work on a
common task. Over the last decade, researchers
have sought to understand the benefits and costs
associated with VTs. Given this, there is now a
burgeoning amount of literature on VTs that spans
multiple disciplines [5].

Nevertheless, various challenges appear in
VTs, one of which is a lack of trust that leads to
other important consequences such as “poor
socialisation and socio-cultural fit, absence of

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

ISSN 2007-9737

conflict handling and lack of cognitive-based trust,
increasing monitoring, inconsistency in work
practices and both a decrease and unpredictability
in communication” [6, 7]. Lack of trust can thus
cause a decrease in productivity, quality and
information exchange.

It is, however, difficult to build and foster trust
by using an application, since the conditions
associated with distribution are very demanding
owing to the fact that most of the traditional
sources of trust do not exist in networked
conditions. Consequently, trust in networks may
emerge occasionally, but maintaining and fostering
it is particularly challenging [7-11].

Our awareness of this problem led us to study
how this lack of trust could be avoided or
decreased. Social Networking Sites (SNS), may be
one alternative that can be used for this purpose,
since they have the capacity to permit members of
a virtual group to share experiences, exchange
information and present themselves in real-time
[10]. These features of SNS encouraged us to
develop a tool based on the idea of a social
network that helps to build trust among VT users.
This tool is called Trusty.

The Trusty tool was therefore designed with the
purpose of facilitating the fostering of trust among
team members. The functionality of "Trusty" has
consequently been aligned and presented
according to the schema of trustworthiness
proposed by [11]. Furthermore, in this paper we
present the results of the mechanisms and
information elements of Trusty as regards their
trustworthiness, which were tested by 100
developers from 5 different cities in Mexico.

2 Background

In the literature, the term “trust” acquires various
meanings according the context in which it
appears. Trust is generally defined as a “positive
characteristic leading to desirable behavior and
outcomes”. According to [12], it is therefore
possible to find different types of trust, which are:

i) Personal or impersonal, including cognitive
trust, which refers to beliefs about others’
competence and reliability. This can lead
individuals to engage in less self-protective
actions and be more likely to take risks. This

type also includes affective trust, which
refers to what arises from emotional ties
among group members that reflect beliefs
about reciprocated care and concerns.

ii) Swift or fragile. Swift trust occurs when
people obtain trust from previous settings in
the present. This emerges in a work context
and in a limited history of working together,
diverse member skills, etc. Fragile trust is a
positive trust that is vulnerable to
opportunistic defections. It generally
develops early in a team's life cycle [13].

iii) Positive or Negative. Even when positive
trust is desirable, negative trust and distrust
may emerge. Negative cognitive trust occurs
when a trustor believes that a trustee will not
fulfil commitments and does not have the
necessary competencies and skills to make
an effective contribution. Mistrust may
therefore stem from the unknown and can
change to positive trust if expectations are
met or exceeded.

Trust building is important, but more important is
the initial trust building, because it is a process in
which the trustee’s trustworthiness is evaluated
and expectations are negotiated [14], such that if
the expectations about a trustee are not clear and
well set out from the beginning, subsequent efforts
to achieve or maintain trust will be useless [13].

3 Schema of Trustworthiness

All of the above has led different researchers to
make efforts to develop and maintain trust during
virtual teamwork [4, 15-17] in which they have
identified that external signals (reputation, roles,
rules), and intrinsic factors (predisposition to trust),
determine initial swift trust. Moreover,
assessments of benevolence and the continued
assessment of integrity determine trust during the
final stages of work, signifying that external signals
(reputation, roles and rules), and intrinsic factors
(predisposition to trust), determine initial swift trust.
An appreciation of ability and integrity (cognitive
trust), also enables trust to be established when a
team first begins to work together. Benevolence
(affective trust) ,and the continued assessment of
integrity similarly determine trust in the later
stages [13].

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini464

ISSN 2007-9737

Fig. 1. Model for the schema of trustworthiness proposed in [11]

Fig. 2. Trusty tool view Fig. 3. Public profile information provided by trusty

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 465

ISSN 2007-9737

The features of trust described previously are
used by the authors of [11], to propose a method
with which to improve the creation of interpersonal
trust in a virtual team, the type of trust in which we
are interested for this study.

The proposal from the aforementioned study
will be used to show how the Trusty tool fosters
interpersonal trust in VTs. The schema of
trustworthiness, which has five main categories as
is shown in Figure 1, is summarised in the
following section.

4 Fostering Trust with Trusty

Trusty is a tool which was designed with the goal
of fostering trust in VT’s (see Figure 2). Trusty was
developed to have the following main capabilities:

 To provide useful information about co-
workers, focusing on easing the
communication among team members.

 To provide mechanisms through which to
share informal information in order to increase
the friendship among members and,
consequently, the team’s spirit of trust.

 To provide mechanisms to support
communication by means of a set of
groupware tools.

 To provide mechanisms to support
knowledge sharing.

 To provide mechanisms to support
coordination by means of event creation
and sharing.

 To provide reports on and statistical analyses
of the social network supported by the tool in
order to help project leaders to obtain feedback
about members’ interactions.

We have taken the schema of trustworthiness
proposed by [11], as a reference model to explain
how Trusty tool fosters trust during teamwork.

In this section we therefore describe how
reliability can be perceived by a Trustor as regards
the information elements that impact on the
categories proposed in the schema
of trustworthiness.

4.1 Communality

The first category that [11] considers important in
order to foster trust is communality, which refers to
the personal characteristics that the trustor has in
common with the trustee. This can be any shared
characteristic, like a similar goal that they wish to
achieve, shared language use, common identity
characteristics or shared values.

Trusty attempts to foster Communality by
providing different types of information stated in
three profiles: a public profile, a project group
profile and a personal profile (see Figure 3A).
These allow trustees to discover any
characteristics that they may have in common with
a particular trustee.

The public profile shows general information
about stakeholders (trustee). It is therefore visible
to all the people in the organisation in order to
provide information that will allow them, for
instance, to communicate with each other. The
information shown in this profile is considered to be
common (gender, nationality, native language and
level of knowledge of foreign languages).

We considered that it was necessary to show
information regarding gender (see Figure 3A)
because some people feel more comfortable
interacting with people of the same gender, or vice
versa and sometimes it is difficult to know whether
you are interacting with a man or a woman just by
their name. A mistake of this nature may
be offensive or embarrassing [18].

Furthermore, the language is very important for
communality, since it can be a key factor (see
Figure 3B). This is because the language will be
the communication system that will allow the
stakeholders to communicate and exchange their
ideas [19-21].

It is thus important to know a trustee’s level of
knowledge of languages because the common
language among stakeholders could increase the
trust needed to start an interaction [22]. The
objective of the project profile is to share
information about those members who are working
on the same project, which might make
communication and coordination easier (see
Figure 4).

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini466

ISSN 2007-9737

Fig. 4. Project group profile information provided by trusty

Fig. 5. Personal profile information provided by trusty

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 467

ISSN 2007-9737

This profile includes all the information in the
public profile and also appends (see Figure 4A)
project-related information such as the name of the
project on which a person is working or has
worked, their role in the project, current activities,
forthcoming events (see Figure 4B), etc.
Information concerning people skills (see Figure
4C) and place of work (see Figure 4D) can also be
included. This information helps to locate where
the other person is, as communicating with a
colleague without knowing where that person is
located may sometimes make one feel
uncomfortable [23].

This information allows the trustor to discover
features that s/he may have in common with the
trustee, signifying that using information related to
the type of project, role and knowledge can help to
generate more willingness to interact [24].

The personal profile helps to share more private
aspects, which is critical when attempting to foster
trust. For instance, the culture a person is from may
allow trust to be fostered among partners because
culture plays a key role in the context of VTs [25],
since it is clearly reasonable to believe that if you
know more about a person, you might have more
criteria to decide whether that person is
trustworthy. Moreover, according to [26], how well
people know each other has an impact on team
spirit. This profile gives people the opportunity to
share more information about themselves and to
provide a channel for informal communication in
VTs, with the objective of increasing mutual
knowledge and helping to build trust [23]. The
personal profile (see Figure 5) includes other data
items that are specifically related to the person in
order to encourage interpersonal interaction. This
profile is only visible to people that have been
previously accepted as “friends”. The importance
of understanding cultural differences and the
relevance this can have in the successful
completion of projects should not be
underestimated [25], since a trustor could feel
more comfortable starting an interaction with a
trustee from the same or a similar culture (see
Figure 5A) [27]. In contrast, the interest information
(see Figure 5B) provides data concerning personal
preferences, such as hobbies, activities, etc. So,
unlike other (social networks) tools, the personal
profile of Trusty is oriented to establish a formal
communication, and do it as smoothly as possible,

among the team members providing information
such as culture, hobbies, personal interests, etc.;
one of the reasons for adding this type of
information elements is for users to find their
personal interest characteristics with their
colleagues, to facilitate the starting of
communication and to form their working
community.

Trusty additionally includes the information
element “contact by” which allows a trustee to
indicate the means by which media s/he prefers to
be contacted (see Figure 2). That is, when a
trustor identifies that a possible trustee has chosen
the same means of communication, this could
encourage the trustor to contact him/her since they
could interact by the same means in a comfortable
manner.

4.2 Ability

In order to foster trust, it is important to know a
trustee’s capabilities, determined by knowledge,
skills and competences, which enable tasks to be
performed within a specific domain.

The project group profile provides two sections
in which abilities are shown: Information about the
trustee’s roles and the project in which s/he is
involved (Figure 6A) and type of experience with
technology use (Figure 6B). The personal profile
also provides more data about skills and
knowledge [28], such as previous work experience
(Figure 6C) and academic studies (Figure 6D).
This information will allow the trustor to perceive a
trustee’s capabilities in a rapid and explicit manner.
This kind of information could be useful when
assigning tasks, and more so when these tasks are
critical to a project [29].

4.3 Benevolence

This category refers to the perceived level of
courtesy and positive attitude a trustee displays
towards the trustor. It includes the extent to which
a person seems: willing to help, available, sharing,
to have faith in intentions, receptive, kind, open,
caring and committed. Controlling benevolence in
a tool can be a challenge.

However, we explain how we believe that the
different features of Trusty could help a trustor to
detect the positive attitude towards collaboration

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini468

ISSN 2007-9737

that a particular person has (willingness to help,
availability and sharing).

One important characteristic of Trusty is the
existence of a mechanism that detects availability
for contact [24], identifying the best moment at
which to initiate communication with other users
based on their personal preferences. To do this,
user profiles in Trusty show information about the
user’s working hours, the time at his/her site, and
the most important aspects of his/her current
status regarding availability, his/her preferred time
to be contacted, etc. It should be highlighted that
users provide some of this information when they
define their profiles (see Figure 7).

Trusty includes a mechanism that helps to
choose the best moment at which to initiate
communication with another user based on
people’s personal preferences.

To do this, each person provides, and his/her
profile shows, information about their working
hours, their current status regarding availability
(see right-hand side of Trusty screens in Figure 2),
the time people prefer to be contacted, etc. In
addition, it has been shown that interruptions have
a negative impact on task completion time [14, 30],
decision-making [31, 32], and people’s emotional
states [33]. Interruptions may also result in
prospective memory failure [30, 34], which refers
to the fact that an individual may have a problem
remembering what s/he has to do as regards a
planned task (or in this case, the interrupted task).
Moreover, in order to make this information clearer
for the users, Trusty represents the user’s status
with a colour code similar to that of CWS [35]. This
colour code is guided by the selective availability
criteria [36], such as "I am available only to people
who are related to the task I am dealing with now
and am not available to other people”.

Trusty does this by using different colours on
the photo frame in the panel on the right of the
screen in order to indicate whether or not it is an
appropriate moment to start a synchronous
interaction with the other person. There are five
possible colours (blue, green, yellow, orange and
red). The colour code for the photo frame, taking
into account the setting of the current status and
the time at the site with regard to the hours at which
that person prefers to be contacted.

Fig. 6. Ability to view information using trusty

Fig. 7. Availability view

Fig. 8. Statistics (SNA) view

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 469

ISSN 2007-9737

Another of the capabilities that we wished to
include in the design of Trusty was that of obtaining
information about the usage of the tool by team
members. This information may, for example, be
useful in detecting that a particular person is
undergoing message overload or the lack of
interaction between certain team members. The
algorithm that makes this possible is based on
SNA [37]. The information is shown as a graph on
which nodes represent Trusty users (see Figure
8C). This statistical mechanism is accessible to
project managers and system administrators. The
tool can be used to analyse various aspects of
interaction on the social network, including

message traffic, event publication, wall usage,
profile visits, and knowledge repository usage (see
Figure 8A). We therefore believe that this tool
helps to increase positive leadership, team spirit
and enthusiasm because it helps, for instance, to
detect a particular worker’s overload or whether
there is a person who might have communication
problems since s/he does not use any
communication mechanisms (see Figure 8B). It is
also possible to discover benevolence by
analysing which people are contacted most often
and whether or not they respond. This allows a
trustor to “infer” whether the trustee is an open,
kind or receptive person.

Table 1. Trusty versus continuous coordination tools

Tools

Communality Ability Benevolence Internalized norms Accountability

K
n
o
w

le
d
g

e

C
o
m

p
e
te

n
c
e

S
k
ill

s

W
ill

in
g
n

e
s
s
 t

o
 h

e
lp

A
v
a
ila

b
ili

ty

S
h
a
ri

n
g

F
a
it
h
 i
n

 i
n
te

n
ti
o
n
s

R
e
c
e

p
ti
v
e
ly

F
ri
e

n
d
lin

e
s
s

O
p
e

n
n

e
s
s

C
a
ri
n

g

C
o
m

m
it
m

e
n

t

In
te

g
ri
ty

D
is

c
re

ti
o
n

H
o
n
e

s
tl
y

F
a
ir

n
e

s
s

L
o
y
a
lt
y

R
e
lia

b
ili

ty

C
o
n
s
is

te
n

c
y

S
e
lf
-c

o
n
fi
d
e

n
c
e

P
e
rs

is
te

n
c
e

R
e
s
p

o
n
s
ib

ili
ty

Palantir X X

Workspac
e Activity
Viewer

 X X

Ariadne X X

World
View

X X X

Trusty X X X X X X X X X X X

Table 2. Trusty versus enterprise social networks

Tools

Communa
lity

Ability Benevolence
Internalized norms

Accountability

K
n
o
w

le
d
g

e

C
o
m

p
e
te

n
c
e

S
k
ill

s

W
ill

in
g
n

e
s
s
 t

o
 h

e
lp

A
v
a
ila

b
ili

ty

S
h
a
ri

n
g

F
a
it
h
 i
n

 i
n
te

n
ti
o
n
s

R
e
c
e

p
ti
v
e
ly

F
ri
e

n
d
lin

e
s
s

O
p
e

n
n

e
s
s

C
a
ri
n

g

C
o
m

m
it
m

e
n

t

In
te

g
ri
ty

D
is

c
re

ti
o
n

H
o
n
e

s
tl
y

F
a
ir

n
e

s
s

L
o
y
a
lt
y

R
e
lia

b
ili

ty

C
o
n
s
is

te
n

c
y

S
e
lf
-c

o
n
fi
d
e

n
c
e

P
e
rs

is
te

n
c
e

R
e
s
p

o
n
s
ib

ili
ty

Yammer X X X

Zyncro X X X

Kudos X

Faceboo
k

X X

Twitter X

LinkedIn X X

IBM SB X X X

Trusty X X X X X X X X X X X

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini470

ISSN 2007-9737

For instance, in Figure 8C we can see that there
are several isolated nodes (Pablo, Jaime Alberto
and Francisco), and this may be a sign of a
problem, since as all these people are working on
the same project it is logical to believe that all of
them have to use some type of communication.
When the project manager detects this situation by
looking at the graph, s/he should attempt to find out
why this situation has occurred. It might be that
these people are on holiday at that time, and it is
not therefore a problem. However, it could be a
problem if these people do not communicate
because they are shy or have problems
understanding the messages, etc. In contrast, the
node tagged as “Ana Lourdes” shows a lot of
interaction with several members, and the project
manager could therefore attempt to find out
whether this person is overloaded or is an expert
in a topic and is helping other teams’ members.

Social Networks Analysis (SNA) [38], permits
us to infer that a trustee has the characteristic of
openness by viewing the items shared and the
interest taken as regards interacting, even if s/he
constantly responds to requests to interact [39].
The trustor can also infer whether a trustee is
committed [40] and is interested in what is
happening around the trustor, i.e. whether the
trustee constantly participates on the trustor’ wall.
Moreover, when a trustee provides his/her
availability schedule, a commitment indicator is
shown.

According to literature, SNS is a good method
with which to build trust in virtual teams.
Furthermore, SNA can be used to obtain different
information about team members, which might
help to predict or detect possible problems in
virtual teams, such as people who are isolated or
overloaded, or a lack of communication among
those that work in coupling tasks.

4.4 Internalised Norms

This category refers to the intrinsic moral norms a
trustee uses to guard his/her actions. These differ
from benevolence in that they are directed towards
others in general, rather than toward a specific
trustor. This includes the extent to which a person
seems to have: integrity, discretion, honesty,
fairness and loyalty [11].

The internalised norms are not potentiated with
the tool, as we believe that they are very particular
aspects of people’s personalities. They have not
therefore been considered when designing Trusty.
However, Language Analysis regarding how a
trustee uses the chat and walls could serve to infer
some people’s values. This language issue is not,
however, within the scope of Trusty.

4.5 Accountability

This is the last category of the schema (see Figure
1) and refers to the degree to which a person is
liable and accountable for his/her acts and meets
the expectations of another person. It includes the
extent to which a person seems to be: reliable,
consistent, self- confident, persistent
and responsible.

Trusty provides a list per project showing in
which projects the trustor is involved. The items of
information obtained from this list are project
name, date joined, role, start date and completion
of the project (responsibility). This kind of
information makes it possible to know the
workloads that teamwork members have accepted
[41], and a trustor can therefore consult this
information in order to see what responsibilities a
person has and whether that person tends to
meet deadlines.

5 Differences between this Social
Application and Others

Several applications can support trust building in
VT’s. Table 1 shows a comparison between
"Trusty" and various other continuous coordination
tools. This comparison was performed according to
how this tool fulfils the schema of trustworthiness
proposed by [11]. A brief description of these tools
is presented as follows:

 Palantír [42]: This application fosters
benevolence towards the other team members,
since it is possible to know which member has
edited a module (commitment) and whether the
task was completed (responsibility).

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 471

ISSN 2007-9737

Table 3. Factors and internal consistency

 ITEMS Factors

1 2 3 4 5

1 The information that Trusty distributes forms part of my work activities. .657
2 The information that Trusty shows is in accordance with my

communication needs at work. .723
3 Trusty’s information elements could help me to resolve any doubts I may

have about my colleagues’ experience. .537
4 Trusty shows different information profiles that could help me to identify a

colleague with similar interests to my own. .445
5 The Trusty Project Group Profile shows information about a colleague’s

software development skills .682
6 I would be prepared to use Trusty to obtain information about my

colleagues’ expertise .737
7 Trusty allows me to analyse a colleague’s level of interactions with the

work group .521
8 Trusty provides information about colleagues in a clear way

 .731
9 A colleague’s availability mechanism is appropriate as regards determining

the best moment at which to contact me .574
10 The mechanism used to determine the best moment at which to contact a

colleague is appropriate. .551
11 The assistance that I receive from the colour code in order to determine a

colleague’s state of availability is easy to understand. .674
12 Using Trusty to communicate with my colleagues is appropriate and

useful. .671
13 The information provided about a colleague is sufficient for me to be able

to contact him/her. .678
14 I shall recommend Trusty to my colleagues. .538
15 If anyone asks me about the Trusty system, I shall recommend it to them. .496
16 I shall encourage my colleagues to use the different services provided by

Trusty. .686
17 If my organisation adopts Trusty, I shall use it to communicate with my

colleagues .574
18 The personal information included in Trusty does not have a negative

effect on me. .727
19 When using Trusty, it is easy to navigate and discover all that I need to

know about my colleagues. .459
20 All the information provided by Trusty is supported in the software

development work activities. .438
21 The image projected as regards the information provided by Trusty is one

of integrity and good values to communicate with colleagues .635

22 I can be sure that the use of my personal information will be managed with
discretion and not made public, but will only be used by the organisation. .607

23 The information provided by Trusty is truthful and verifiable. .640

24 The information in Trusty can keep me informed about a colleague’s
workload. .553

25 I consider that I could become skilled in the use of Trusty in a short
amount of time. .551

26 Trusty is able to provide me with information about a colleague’s project
commitments. .552

27 I consider that the information that Trusty distributes is consistent with the
communication among colleagues in Software Development .690

Accumulated variance =56.87
Cronbach’s Alpha = 0.917

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini472

ISSN 2007-9737

 Workspace Activity Viewer [43]: This
application helps to create more accurate
expectations (commitment), since it illustrates
each member’s prior performance
(competence).

 Ariadne [30]: This application permits team
members to monitor themselves (availability). It
also provides an interactive analysis, which
permits the project manager to adjust team
members’ tasks (responsibility).

 World View [30]: It uses intuitive visualisations
to explain the team members’ status by
identifying relevant tasks (competence),
irrelevant tasks (communality), and
dependences (commitment).

As the results in Table 1 show, Trusty is the
most complete application as regards fulfilling the
schema of trustworthiness.

On the other hand, in Table 2 is shown a
comparison between Trusty and social networks. It
is important to highlight that the social networks
selected have been promoted for use in
companies. A description of these social networks
is presented as follows:

 Yammer [44]: This social network includes
microblogging, private chats, shared
workspaces (availability) and document
exchange (sharing).

 Zyncro [32]: This social network was designed
to allow employees to recognize each other,
which promotes engagement (commitment)
with the enterprise.

 Kudos [45]: It is a microblogging application,
which includes an employee recognition
program and a corporate social network
designed to engage the enterprise team with
enhanced communication, collaboration,
appreciation, recognition, and rewards
(competence).

 Facebook [46]: The main features are sharing
and communication among contacts
considered as “friends” (sharing). This utility
also permanently shows its members’ public
profiles (communality), signifying that it is
possible to access personal data.

 Twitter [47]: Users can describe an actual
situation or discuss a specific topic (sharing).

These comments can be followed by users,
thus allowing them to keep up to date with their
topics of interest.

 LinkedIn [48]: It is thus possible to contact
professional colleagues or old schoolmates.
This network also makes it possible to become
known in the professional field in order to find a
job (communality).

 IBM Social Business (SB) [49]: This Social
Business can help an organization extend
customer relationships, generate new ideas
faster (sharing), identify expertise (communally)
and enable a more effective workforce
(commitment).

 Table 2 shows Trusty as the social network that
provides the most features to help develop
trust. The fact that the SNS Analysis is included
provides it with an important competitiveness
and advantage over the other social networks,
as important information can be obtained from
these analyses. The differences shown in this
section, with respect to Trusty's characteristics
against other tools, were possible to determine
by means of the factors of the Rusman
Schema, since its factors helped us to make an
analysis centered on the characteristics of
Trustworthiness. With this it was possible to
identify the shortcomings of the tools in terms of
these factors and from there it could be possible
to propose more suitable designs for the
promotion of Trustworthiness among different
users of an organization or virtual community.

6 Evaluation

The objective of this evaluation was to perceive
the trustworthiness of Trusty by analysing users’
opinions with regard to the performance of its
mechanisms and services.

6.1 Design of the Study

A scenario was therefore designed whose
objective was to test all the Trusty options,
signifying that the users had to carry out all the
activities indicated in the scenario. In order to test
the trustworthiness of the application, we designed

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 473

ISSN 2007-9737

a questionnaire on the basis of the schema of
trustworthiness proposed by [11].

The decision was made to first carry out a pilot
evaluation in order to test whether the scenario
was as complete as possible (all the main
functionalities were dealt with) and that the
questionnaire was easy to understand. Two
experts in Software Development created the
activities and answered the questionnaire. They
detected various limitations in the tool when it was
used with Mac and they also suggested the
addition of more activities in the evaluation
scenario. Trusty was therefore improved and the
proposed activities were added.

6.2 Subjects

The participants were 100 workers from different
companies in five different Mexican cities. All of
them were participating or had participated in
Software projects. Their average age was 32 years
old, and they all had at least three (3) years of
experience in Software Development. All of them
had Bachelor’s degrees (BSc) in computer science
or similar and eight (8) had Master’s degrees
(MSc) in computer science. They had different
roles, i.e. there were 10 project managers, 2
testers, 25 programmers, 30 analysts, and one
researcher. The remaining 33 respondents had
played several roles, including programmer,
analyst, tester or project manager. Each person
was a member of a different software development
enterprise in different geographical locations and
they carried out the evaluation activities in their
own workplaces.

6.3 Materials

This section describes the different materials used:

Scenario Document: This document
described a set of scenarios for the fifteen activities
that users have to perform in order to try out all the
basic features of the tool.

Questionnaire regarding the tool: The
questionnaire used to measure trustworthiness
contained 27 questions quantified using a Likert
scale of 1 (strongly disagree) to 5 (strongly agree).
The average time needed to respond to the
questionnaire was 15 minutes. Before responding

to the questionnaire the participants were asked to
state their years of experience in software
development, their age, highest qualifications and
the role they played in the organisation. This
questionnaires was designed by using the
schema of trustworthiness proposed by [11] to
create an initial set of 50 questions to which the
aforementioned people would respond. This
preliminary format then was presented to a group
of experts (psychologists and software engineers)
in order for them to evaluate it. The analysis carried
out allowed us to select the 32 questions contained
in the first version of the trustworthiness
questionnaire.

The concurrent validity of the questionnaire was
obtained by means of contrasted groups obtained
using the t test for independent samples, with the
aim of identifying the questions that would show
which participants had obtained a low mark as
regards their perception of trustworthiness, and
which had obtained high marks. We discovered
that the total number of questions had p values of
less than 0.05, i.e. all of them were discriminatory
and were sensitive as regards identifying low and
high marks. We next developed a frequency
analysis of the questions in order to eliminate those
that were most biased and had an asymmetric
distribution, thus reducing the number of questions
in the questionnaire to 27, which were then
subjected to an exploratory factorial analysis using
orthogonal rotation techniques in which the
saturation point was 0.40.

This initially showed seven factors, five of which
contained three or more questions. Those factors
containing less than three questions were
eliminated, leaving us with five factors. This
factorial structure of 27 questions proved to be the
most psychometrically appropriate and consistent,
and was as follows:

 Factor 1: Communality (4 items).

 Factor 2: Ability (4 items).

 Factor 3: Benevolence (5 items).

 Factor 4: Internalized norms (7 items).

 Factor 5: Accountability (7 items).

The five factors, along with their respective
questions, accumulated variance and Cronbach’s
alpha are shown in Table 3.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini474

ISSN 2007-9737

Table 4. Communality results

ITEMS Mean

(std dev.)

1. The information that Trusty distributes forms a part of my work activities.
3.72 (0.780)

2. The information that Trusty shows is in accordance with my communication
needs at work.

3.67 (0.753)

3. Trusty’s information elements could help me to resolve any doubts I may have
about my colleagues’ expertise.

3.66 (0.879)

4. Trusty shows different information profiles that could help me to identify a
colleague with characteristics that are similar to my own.

3.76 (0.698)

Total 3.70 (0.046)

Table 5. Ability results

ITEMS Mean

(std dev.)

5. The Trusty Project Group profile shows information about a colleague’s
software development skills.

3.10 (0.870)

6. I would be prepared to use Trusty to obtain information about a colleagues’
expertise.

2.74 (1.088)

7. Trusty allows me to analyse a colleague’s level of interactions with the work
group.

3.68 (0.634)

8. Trusty provides information about colleagues in a clear way. 3.68 (0.764)

Total 3.30 (0.463)

Table 6. Benevolence results

ITEMS Mean

(std dev.)

9. A colleague’s availability mechanism is appropriate as regards determining the
best moment at which to contact me.

3.80 (0.620)

10. The mechanism used to determine the best moment at which to contact a
colleague is appropriate.

3.60 (0.696)

11. The assistance that I receive from the colour code in order to determine a
colleague’s state of availability is easy to understand.

3.84 (0.581)

12. Using Trusty to communicate with my colleagues is appropriate and useful.
3.86 (0.697)

13. The information provided about a colleague is sufficient for me to be able to
contact him/her.

3.57 (0.807)

Total 3.73 (0.138)

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 475

ISSN 2007-9737

The questionnaire as a whole obtained an
internal consistence of α=0.917.

6.4 Procedure

Three activities were necessary for this evaluation,
which were:

i) Initial Meeting. The participants were introduced
to the study and were provided with the Trusty tool
and its user manual.
ii) Trusty Activities. They were asked to perform the
following activities with the tool, and they had one
week to carry out the tasks:

- Update their general information.

- Update the profile of a project group.

- Update their personal profile.

- Perform searches to locate a user
("Thomas").

- Locate the partners in the projects in which
they were also involved, and identify their
nationalities.

- Locate and identify friends’ hobbies.

- Post a message.

- See next month’s events and their rates.

- See posts.

- Create a message.

- Send a Chat message.

- Use the Private Message chat application.

- See the files in the "Documentation"
repository.

- Consult the amount of interactions in a
user profile.

- Create a repository and upload a file

iii) On-exit survey. Finally, we asked the
participants to fill in a questionnaire evaluating the
trustworthiness of the System.

6.5 Limitations

The experiment described in this section and the
methods used in order to evaluate it might have
several weaknesses. The influence that these
weaknesses may have had on the results is
explained as follows: A) The results are focused on
the participants’ opinions and we do not therefore
know whether being exposed to the system

changed their perception of the technology. These
results are restricted to a group of developers who
work in geographic locations in Mexico, and it will
therefore be difficult to replicate the results. B)
Finally, this study is an exploratory work whose
reach is focused on the trustworthiness of the use
of Trusty in Software Development work
environments.

6.6 Results and Discussion

The evaluation of Trusty was performed in
collaboration with enterprises working in Global
Software Development (GSD). The objective of
this evaluation was to perceive the trustworthiness
of Trusty by analysing users’ opinions as regards
the performance of its mechanisms and services.
A scenario was therefore designed whose
objective was to test all the options of Trusty,
signifying that the users had to carry out all the
activities indicated in the scenario, after which we
analysed the participants’ responses to the
questions. The questionnaire was quantified using
a Likert scale of 1 (strongly disagree) to 5
(strongly agree).

In the case of testing Trusty’s Communality,
the mean communality score that users gave to
Trusty was 3.70 (s.d.= 0.046), as is shown in Table
5. We should state that the developers considered
that the information distributed by Trusty is
appropriate for DSD activities (mean = 3.72; s.d.=
0.780) and that they also considered that Trusty
provides useful information with which to identify a
colleague’s characteristics.

However, although Trusty provides
communality with adequate support, the mean
obtained would have been higher if more detailed
information elements that would enable the trustor
to identify personal characteristics that s/he has in
common with the trustee had been provided (e.g.
types of projects on which they have participated
or a link to their personal network.

In the case of testing Trusty’s Ability, the
mean Ability score that users gave to Trusty was
3.30 (s.d.= 0.463), as is shown in Table 5.
According to the scale in the questionnaire, the
developers considered that the information
provided by Trusty is insufficient. This is evident if
we observe the mean score obtained by Item 6,
which was evaluated with a low mark (mean =2.74;

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini476

ISSN 2007-9737

s.d.=1.088), since the participants considered that
they were not given sufficient information about
their colleagues’ skills. What is more, the
information provided about the Project Group
profile was not sufficient as regards their
colleagues’ development skills or capabilities.

In the case of testing Trusty’s Benevolence,
the mean benevolence score that users gave to
Trusty was 3.73 (s.d.= 0.138), as is shown in Table
6. The participants considered that Trusty provides
elements that allow them to perceive their
colleagues’ level of availability and willingness to

Table 7. Internalized norms results

ITEMS Mean

(std dev.)

14. I shall recommend Trusty to my colleagues. 3.90 (0.732)

15. If anyone asks me about the Trusty system, I shall recommend it to them. 4.00 (0.804)

16. I shall encourage my colleagues to use the different services provided by
Trusty.

3.71 (0.902)

17. If my organisation adopts Trusty, I shall use it to communicate with my
colleagues.

3.41 (0.889)

18. The personal information included in Trusty does not have a negative effect
on me.

3.56 (0.935)

19. When using Trusty, it is easy to navigate and discover all that I need to know
about my colleagues.

3.94 (0.694)

20. All the information provided by Trusty is supported in the software
development work activities.

4.07 (0.590)

Total 3.80 (0.245)

Table 8. Accountability results

ITEMS Mean

(std dev.)

21. The image projected as regards the information provided by Trusty is one
of integrity and good values to communicate with colleagues.

3.89 (0.665)

22. I can be sure that the use of my personal information will be managed with
discretion and not made public, but will only be used by the organisation.

3.69 (0.748)

23. The information provided by Trusty is truthful and verifiable. 3.62 (0.838)

24. The information provided by Trusty can keep me informed about a
colleague’s workload.

3.66 (0.728)

25. I consider that I could become skilled in the use of Trusty in a short amount
of time.

3.58 (0.755)

26. Trusty is able to provide me with information about a colleague’s project
commitments.

3.27 (1.004)

27. I consider that the information that Trusty distributes is consistent with the
communication among colleagues in Software Development.

3.90 (0.732)

Total 3.66 (0.213)

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 477

ISSN 2007-9737

help, as is evidenced by Item 12 (mean 3.86;
s.d.=0.697). In this case they perceive that the
information provided by Trusty is useful for them as
regards contacting their colleagues at appropriate
moments. We should also mention that, with
regard to Item 11, they found that the colour code
provided by Trusty in order to identify a colleague’s
availability is easy to use and understand
(mean=3.84; s.d.=0.581).

In the case of testing Trusty’s Internalised
norms, the mean Internalised norms score that
users gave to Trusty was 3.80 (s.d.= 0.245), as is
shown in Table 7. The participants considered that
Trusty tool promotes activities in the Software
Development work environment (mean=4.07;
s.d.=0.590). They were also of the opinion that
Trusty helped them to find information about their
colleagues (mean=3.94; s.d.=0.694), thus
promoting communication by means of different
services (mean=3.71; s.d.=0.902), and signifying
that they would recommend the tool to their
colleagues (mean=4.00; 0.804). In general, the
participants considered that Trusty provides
information with which to find colleagues and that
this information is used only to support
work activities.

In the case of testing Trusty’s Accountability,
the mean Accountability score that users gave to
Trusty was 3.66 (s.d.= 0.213), as is shown in Table
8. Trusty tool was considered to promote integrity
and good values with the aim of communicating
with colleagues (mean=3.89; s.d.=0.665), whilst
respecting the discretion of the organisation of the
information (mean=3.69; s.d.= 0.748). However,
despite being a tool with which to exchange
personal and professional information, Trusty was
not considered sufficient as regards providing
information about a colleague’s forthcoming
engagements (mean=3.27; s.d.=1.004).

The results obtained from the questionnaire do
indicate that Trusty provides a suitable level of
trustworthiness among software developers.
However, an important adjustment should be made
to it as regards Ability, since the mean scores
obtained for the responses tended towards the
neutral part of the scale (mean=3.30/5). In the case
of the remaining dimensions, the participants
tended to agree that the tool was useful, although
Trusty should be adjusted in order to facilitate
trustworthiness towards colleagues in an

organisation, and it will therefore be necessary to
include information elements or mechanisms that
will enable trustworthiness towards colleagues to
be enriched.

7 Conclusions and Future Work

In this paper we have described some of the
challenges of VTs. Lack of trust is one of the
challenges that also affects communication,
coordination and control. In order to decrease
these problems, we have developed Trusty, a tool
that has been designed to help to develop trust
among team members and also to make
communication, coordination, and control easier.
Trusty has been explained by following the schema
of trustworthiness proposed by [11], and showing
how Trusty covers most of the features included in
this schema.

Moreover, Trusty was tested by means of an
evaluation at different software companies whose
team members worked with geographically
distributed co-workers. The results obtained have
provided us with some insights into how Trusty was
perceived by workers as regards its
trustworthiness. These results provide evidence
that users tend to agree that Trusty fosters
elements related to Communality, Benevolence,
Internalized norms and Accountability but that the
information about Ability is not sufficient. It will be
necessary to continue working on these aspects as
there is still room for improvement.

Trustworthiness was measured by creating a
questionnaire based on the schema of [11], which
obtained a high internal consistency (α=0.917),
and we therefore consider that the questionnaire is
both reliable and valid for the purposes of this
measurement. This questionnaire can be used to
measure the level of confidence fomented in the
work group via the use of communication and/or
coordination tools, using the information elements
that are distributed with colleagues’ contextual,
personal and professional information as a
starting point.

The results obtained have provided us with
information that will allow us to identify those
elements of the Rusman schema used in Trusty
that were perceived to be the weakest. In this case,
Ability was perceived to be the lowest, and we are

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini478

ISSN 2007-9737

therefore contemplating a modified version of
Trusty that will permit access to more detailed
information as regards the information elements
that Trusty currently provides, such that if the
trustor requires more information about a trustee’s
skills, it will be possible to obtain it.

To conclude, we would like to state that Trusty
could be used by any company or organisation
whose teams are distributed throughout the world
owing to a variety of collaboration strategies such
as acquisitions, partnerships, and outsourcing. We
believe that the tool will be very useful, principally
in the first steps of collaboration during which
people do not know each other and communication
and collaboration among team members is
important.

Trusty could also be useful in academic
settings, since there is a strong tendency to
collaborate on projects with people from other
countries. When preparing a European project, it
is advisable to create a multinational consortium in
which not all the researchers have previous
experience of working together, and Trusty could
be a perfect means to start this collaboration and
to help to develop trust and team spirit. Moreover,
Trusty could help researchers to discover which
person is the most suitable to ask for help when
performing a particular task.

Acknowledgements

This work has been funded by the GINSENG
project (Ministerio de Economía y Competitividad
and Fondo Europeo de Desarrollo Regional
FEDER, TIN2015-70259-C2-1-R), by GEODAS-
BC project (Ministerio de Economía y
Competitividad and Fondo Europeo de Desarrollo
Regional FEDER, TIN2012-37493-C03-
01), and by the LPS-BIGGER project: Línea de
productos Software para BiG Data a partir de
aplicaciones innovadores en entornos reales (Ref.:
UCTR150175), is framed under the Strategic
Program CIEN, and it is co-funded by “Centro para
el Desarrollo Tecnológico Industrial (CDTI)”, and
“Fondo Europeo de Desarrollo Regional (FEDER),
and GLOBALIA (PEII-2014-038-P), Consejería de
Educación y Ciencia, Junta de Comunidades de
Castilla-La Mancha.

References

1. Damian, D. & Moitra, D. (2006). Introduction:

Global Software Development: How Far Have We
Come?. IEEE Software, Vol. 23, No. 5, pp. 17–19.

2. Gibson, C.B. & Cohen, S.G. (2003). Virtual teams

that work. Creating condition for virtual team
effectiveness, Personnel Psychology, Vol. 57, No.
1, pp. 243–246.

3. Lipnack, J. & Stamps, J. (1999). Virtual teams:
The new way to work. Strategy & Leadership, Vol.
27, No. 1, pp. 14–19. DOI: 10.1108/eb054625.

4. Cascio, W.F. (2000). Managing a Virtual
Workplace. Academy of Management Executive,
Vol. 14, No. 3, pp. 81–91, DOI:10.5465/ame.
2000.4468068.

5. Martins, L.L., Gilson, L.L., & Maynard, M.T.
(2004). Virtual Teams: What Do We Know and
Where Do We Go From Here?. Journal of
Management, Vol. 30, No.6, pp. 805–835, DOI:
10.1016/j.jm.2004.05.002.

6. Moe, N.B. & Šmite, D. (2008). Understanding a lack

of trust in Global Software Teams: a multiple-case
study. Softw. Process, Vol. 13, No. 3, pp. 217-231,
DOI: 10.1002/spip.378.

7. Ali-Babar, M., Verner, J.M., & Nguyen, P.T.
(2007). Establishing and maintaining trust in

software outsourcing relationships: An empirical
investigation. Journal of Systems and Software, Vol.
80, No. 9, pp. 1438–1449, DOI: 10.1016/j.jss.
2006.10.038.

8. McNab, A.L., Basoglu, K.A., Sarker, S., & Yanjun,
Y. (2012). Evolution of cognitive trust in distributed

software development teams: a punctuated
equilibrium model. Electronic Markets, Vol. 22,
No.1, pp. 21–36. DOI:10.1007/s12525-011-0081-z.

9. Al-Ani, B., Wilensky, H., Redmiles, D., &
Simmons, E. (2011). An Understanding of the Role

of Trust in Knowledge Seeking and Acceptance
Practices in Distributed Development Teams. Proc.
6th IEEE International Conference on Global
Software Engineering (ICGSE), pp. 25–34, DOI:
10.1109/ICGSE.2011.25.

10. Colombo, G., Whitaker, R.M., & Allen, S.M.
(2008). Cooperation in Social Networks of Trust.
Proceedings of the 2008 Second IEEE International
Conference on Self-Adaptive and Self-Organizing
Systems Workshops. pp. 78–83. DOI:10.1109/
SASOW.2008.39.

11. Rusman, E., Bruggen, J.V., & Koper, R. (2010).

Fostering trust in virtual project teams: Towards a
design framework grounded in a TrustWorthiness
ANtecedents (TWAN) schema. International

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 479

ISSN 2007-9737

Journal of Human-computer Studies, Vol. 68, No.
11, pp. 834–850. DOI: 10.1016/j.ijhcs.2010.07.003.

12. Al-Ani, B. & Redmiles, D. (2009). Trust in

Distributed Teams: Support through Continuous
Coordination. IEEE Software, Vol. 26, No. 6, pp.
35– 40. DOI: 10.1109/MS.2009.192.

13. Greenberg, P.S., Greenberg, R.H., & Antonucci,
Y.L. (2007). Creating and sustaining trust in virtual
teams. Business Horizons, Vol. 50, No. 4, pp. 325–
333. DOI: 10.1016/j.bushor.2007.02.005.

14. Jalali, S., Gencel, C., & Šmite, D. (2010). Trust

dynamics in global software engineering.
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, Bolzano-Bozen, pp. 1–9.
DOI:10.1145/1852786.1852817.

15. Anawati, D., & Craig, A. (2006). Behavioral

Adaptation Within Cross-Cultural Virtual Teams.
IEEE Transactions of proffessional communicacion
pc, Vol. 49, No. 1, pp. 44–56. DOI: 10.1109/
TPC.2006.870459.

16. Bavec, C. (2004). Trust - The Basis of a Virtual
Organization. Organizacija, Vol. 37, No.10, pp.
594–595.

17. Blanchard, A. & Markus, M. (2002). Sense of

Virtual Community-Maintaining the Experience of
Belonging. Proc. Sense of Virtual Community-
Maintaining the Experience of Belonging (HICSS),
pp. 1–10. DOI: 10.1109/HICSS.2002.994449.

18. Burleson, B.R. (2003). The experience and effects

of emotional support: What the study of cultural and
gender differences can tell us about close
relationships, emotion, and interpersonal
communication. Personal Relationships, Vol. 10,
No. 1, pp. 1–23. DOI: 10.1111/1475-6811.00033.

19. Aranda, G., Vizcaíno, A., & Piattini, M. (2010). A

framework to improve communication during the
requirements elicitation process in GSD projects.
Requirements Engineering, Vol. 15, No. 4, pp. 397–
417. DOI: 10.1007/s00766-010-0105-9.

20. Cataldo, M. & Herbsleb, J.D. (2008).

Communication patterns in geographically
distributed software development and engineers'
contributions to the development effort.
Proceedings international workshop on Cooperative
and human aspects of software engineering, pp.
25–28. DOI: 10.1145/1370114.1370121.

21. Noll, J., Beecham, S., & Richardson, I. (2011).

Global software development and collaboration:
barriers and solutions. (ACM), Vol. 1, No. 3, pp. 66–
78. DOI: 10.1145/1835428.1835445.

22. Calefato, F., Lanubile, F., & Minervini, P. (2010).

Can Real-Time Machine Translation Overcome

Language Barriers in Distributed Requirements
Engineering?. 5th IEEE International Conference on
Global Software Engineering, (ICGSE), pp. 257–
264. DOI: 10.1109/ICGSE.2010.37.

23. Aranda, G., Vizcaíno, A., Hernández, J., Palacio,
R., Morán, A., Vivacqua, A., Gutwin, C., &
Borges, M. (2011). Trusty: A Tool to Improve

Communication and Collaboration in DSD.
Collaboration and Technology, Vol. 6969, pp. 224–
231. DOI: 10.1007/978-3-642-23801-7_18.

24. Ye, Y. (2006). Supporting software development as

knowledge-intensive and collaborative activity.
Proceedings of the 2006 international workshop on
Workshop on interdisciplinary software engineering
research, (WISER), pp. 15–22. DOI: 10.1145/1137
37661.1137666.

25. Casey, V. (2011). Imparting the importance of
culture to global software development. ACM
Inroads, Vol. 1, No. 3, pp. 51–57. DOI: 10.1145/
1835428.1835443.

26. Hernández-López, A., Colomo-Palacios, R.,
García-Crespo, A., & Soto-Acosta, P. (2010).

Team Software Process in GSD Teams: A Study of
New Work Practices and Models. International
Journal of Human Capital and Information
Technology Professionals (IJHCITP), Vol. 1, No. 3,
pp. 32–53. DOI: 10.4018/jhcitp.2010070103.

27. Richardson, I., Casey, V., Mccaffery, F., Burton,
J., & Beecham, S. (2012). A Process Framework

for Global Software Engineering Teams.
Information and Software Technology, Vol. 54, No.

11, pp. 1175–1191, DOI: 10.1016/j.infsof.2012.05.
002.

28. Clerc, V., Lago, P., & Van-Vliet, H. (2011).
Architectural Knowledge Management Practices in
Agile Global Software Development. Proceedings
IEEE Sixth International Conference on Global
Software Engineering Workshop (ICGSE-W), pp. 1–
8. DOI: 10.1109/ICGSE-W.2011.17.

29. Bailey, B.P., & Iqbal, S.T. (2008). Understanding

changes in mental workload during execution of
goal-directed tasks and its application for
interruption management. (ACM) Transactions
Computer-Human Interaction, Vol. 14, No. 4, pp. 1–
28. DOI: 10.1145/1314683.1314689.

30. Al-Ani, B., Trainer, E., Ripley, R., Sarma, A., Van
Der-Hoek, A., & Redmiles, D. (2008). Continuous

coordination within the context of cooperative and
human aspects of software engineering.
Proceedings international workshop on Cooperative
and human aspects of software engineering
(CHASE), pp. 1–4, DOI:10.1145/1370114.1370115.

31. Colomo-Palacios, R., Casado-Lumbreras, C.,
Soto-Acosta, P., García-Peñalvo, F.J., & Tovar E.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

Aurora Vizcaíno, Pedro Garrido, Ramón R. Palacio, Alberto L. Morán, Mario Piattini480

ISSN 2007-9737

(2014). Project managers in global software

development teams: a study of the effects on
productivity and performance. Software Quality
Journal, Vol. 22, No. 1, pp. 3–19, DOI:
10.1007/s11219-012-9191-x.

32. Grau, F.G. & Xifra, J.T. (2011). Zyncro: La Intranet
2.0. El Profesional de la Información, Vol. 20, No. 2,
pp. 214–218.

33. Bailey, B.P. & Konstan, J.A. (2006). On the need

for attention-aware systems: Measuring effects of
interruption on task performance, error rate, and
affective state. Computers in Human Behavior, Vol.
22, No. 4, pp. 685–708, DOI: 10.1016/j.chb.
2005.12.009.

34. Ellis, J. & Kvavilashvili, L. (2000). Prospective

memory in 2000: Past, present, and future
directions. Applied Cognitive Psychology, Vol. 14,
No.17, pp. 1–9. DOI: 10.1002/acp.767.

35. Palacio, R.R., Morán, A.L., & González, V.M.
(2010). CWS: An Awareness Tool to Support

Starting Collaboration in Global Software
Development. The Open Software Engineering
Journal, Vol. 4, No. 2, pp. 38–51.

36. Palacio, R.R., Morán, A.L., González, V.M., &
Vizcaíno, A. (2012). Selective availability:

Coordinating interaction initiation in distributed
software development. IET Software, Vol. 6, No. 3,
pp. 185–198. DOI: 10.1049/iet-sen.2011.0077.

37. Chierichetti, F., Epasto, A., Kumar, R., Lattanzi,
S., & Mirrokni, V. (2015). Efficient Algorithms for
Public-Private Social Networks. Proceedings of the
21th (ACM SIGKDD), International Conference on
Knowledge Discovery and Data Mining (KDD), pp.
139–148. DOI: 10.1145/2783258.2783354.

38. Andrew, M. & Laurie, W. (2011). Socio-technical

developer networks: should we trust our
measurements?. Proceeding of the 33rd
International Conference on Software Engineering.,
(ACM). DOI: 10.1145/1985793.1985832.

39. Poikolainen, T. & Paananen, J. (2007).

Performance Criteria in Inter-Organizational Global
Software Development Projects. Proceedings of the
International Conference on Global Software
Engineering. DOI: 10.1109/ICGSE.2007.35.

40. Verner, J.M., Brereton, O.P., Kitchenham, B.A.,
Turner, M., & Niazi, M. (2012). Systematic literature

reviews in global software development: A tertiary
study. 16th International Conference on Evaluation
& Assessment in Software Engineering (EASE), pp.
2–11. DOI: 10.1049/ic.2012.0001.

41. Ferrin, D., Bligh, M., & Kohles, J. (2007). Can I

Trust You to Trust Me? A Theory of Trust,
Monitoring and Cooperation in Interpersonal and
Intergroup Relationships. Group & Organization
Management, Vol. 32, No. 4, pp. 465–499.

42. Sarma, A., Van, D., & Hoek, A. (2003). Palantir:

Raising Awareness among Configuration
Management Workspaces. Proceedings of the 25th
International Conference on Software Engineering
(ICSE), pp. 444–454. DOI:10.1109/ICSE.2003.12
01222.

43. Ripley, R.M., Sarma, A., & Van Der-Hoek, A.
(2006). Using visualizations to analyze workspace

activity and discern software project evolution.
University of California, Irvine.

44. Riemer, K., Scifleet, P., & Reddig, R. (2012).

Powercrowd: Enterprise Social Networking in
Professional Service Work: A Case Study of
Yammer at Deloitte Australia. Business and
Information Systems, Vol. 2, pp. 1–18.

45. Kudos (2014). Engage Your Employees.
http://kudosnow.com/en/main/feature_overview.

46. Facebook (2014). Advertise on Facebook,
https://http://www.facebook.com/advertising/.

47. Mendoza, M., Poblete, B., & Castillo, C. (2010).
Twitter Under Crisis: Can we trust what we RT?. 1st
Workshop on Social Media Analytics (SOMA), pp.
71–79. DOI:10.1145/1964858.1964869.

48. Huang, S.W., Tunkelang, D., & Karahalios, K.
(2014). The Role of Network Distance in LinkedIn
People Search, in The 37th Annual (ACM-SIGIR)
Conference.

49. IBM (2014). Social Business,

http://www03.ibm.com/press/us/en/presskit/36406.
wss.

Article received on 18/11/2016; accepted on 21/08/2017.
Corresponding author is Aurora Vizcaíno.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 463–481
doi: 10.13053/CyS-22-2-2491

A Social Network to Increase Collaboration and Coordination in Distributed Teams 481

ISSN 2007-9737

http://kudosnow.com/en/main/feature_overview
https://http/www.facebook.com/advertising/
http://www03.ibm.com/press/us/en/presskit/36406.wss
http://www03.ibm.com/press/us/en/presskit/36406.wss

Research in Computing Science

Series Editorial Board

Editors-in-Chief:

Grigori Sidorov (Mexico)
Gerhard Ritter (USA)

Jean Serra (France)

Ulises Cortés (Spain)

Associate Editors:

Jesús Angulo (France)

Jihad El-Sana (Israel)
Alexander Gelbukh (Mexico)

Ioannis Kakadiaris (USA)

Petros Maragos (Greece)
Julian Padget (UK)

Mateo Valero (Spain)

Editorial Coordination:
 Alejandra Ramos Porras

Carlos Vizcaino Sahagún

Research in Computing Science es una publicación trimestral, de circulación internacional, editada por el
Centro de Investigación en Computación del IPN, para dar a conocer los avances de investigación científica

y desarrollo tecnológico de la comunidad científica internacional. Volumen 148, No. 5, mayo de 2019.

Certificado de Reserva de Derechos al Uso Exclusivo del Título No.: 04-2005-121611550100-102,
expedido por el Instituto Nacional de Derecho de Autor. Certificado de Licitud de Título No. 12897,

Certificado de licitud de Contenido No. 10470, expedidos por la Comisión Calificadora de Publicaciones y

Revistas Ilustradas. El contenido de los artículos es responsabilidad exclusiva de sus respectivos autores.
Queda prohibida la reproducción total o parcial, por cualquier medio, sin el permiso expreso del editor,

excepto para uso personal o de estudio haciendo cita explícita en la primera página de cada documento.

Distribuida por el Centro de Investigación en Computación, Av. Juan de Dios Bátiz S/N, Esq. Av. Miguel
Othón de Mendizábal, Col. Nueva Industrial Vallejo, C.P. 07738, México, D.F. Tel. 57 29 60 00, ext.

56571.

Editor responsable: Grigori Sidorov, RFC SIGR651028L69

Research in Computing Science is published by the Center for Computing Research of IPN. Volume 148,

No. 5, May 2019. The authors are responsible for the contents of their articles. All rights reserved. No part

of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of Centre

for Computing Research.

Volume 148(5)

Intelligent Learning Environments

María Lucia Barrón Estrada

Ramón Zatarain Cabada

Yasmín Hernández

Carlos A. Reyes García (eds.)

Instituto Politécnico Nacional, Centro de Investigación en Computación

México 2019

ISSN: 1870-4069

Copyright © Instituto Politécnico Nacional 2019

Instituto Politécnico Nacional (IPN)

Centro de Investigación en Computación (CIC)

Av. Juan de Dios Bátiz s/n esq. M. Othón de Mendizábal

Unidad Profesional “Adolfo López Mateos”, Zacatenco

07738, México D.F., México

http://www.rcs.cic.ipn.mx

http://www.ipn.mx

http://www.cic.ipn.mx

The editors and the publisher of this journal have made their best effort in

preparing this special issue, but make no warranty of any kind, expressed or

implied, with regard to the information contained in this volume.

All rights reserved. No part of this publication may be reproduced, stored on a

retrieval system or transmitted, in any form or by any means, including

electronic, mechanical, photocopying, recording, or otherwise, without prior

permission of the Instituto Politécnico Nacional, except for personal or

classroom use provided that copies bear the full citation notice provided on

the first page of each paper.

Indexed in LATINDEX, DBLP and Periodica

Electronic edition.

http://www.ipn.mx/
http://www.ipn.mx/
http://www.cic.ipn.mx/

Table of Contents
Page

A Content Model based on LOM specification Integrating Learning

Disabilities: Toward an Adaptive Framework .. 9

Jaime Muñoz‑Arteaga, Julien Broisin, Miguel A. Ortiz‑Esparza

A Model for Identifying Steps in Undergraduate Thesis Methodology 17

Samuel González‑López, Aurelio López‑López, Steven Bethard,

Jesús Miguel García‑Gorrostieta

A Web‑based Didactic Tool for Teaching of Distributed Consensus 25

Abdiel González‑Ortega, Francisco de Asís López‑Fuentes

Analysis of Speech Acts for the Design of a Corpus of Phrases used in an

Intelligent Learning Environment ... 33

Xochitl Samantha Delgado‑Hernández,

María Lucila Morales‑Rodríguez, Nelson Rangel‑Valdez,

Laura Cruz‑Reyes, Claudia Gómez‑Santillán,

Juan Javier González‑Barbosa

Process of Building an Educational and a Military Ontology for the

Mexican Context ... 43

Cristal Karina Galindo Durán, R. Carolina Medina‑Ramírez,

María Auxilio Medina Nieto, José Luis García‑Cué

Comprehensive Model for Learning ... 51

Norma Josefina Ontiveros Hernández, Miguel Pérez Ramírez,

Jesús Ángel Peña Ramirez, Sócrates Espinoza Salgado,

Mario Humberto Tiburcio Zuñiga

Design of an Effective Assessment‑Feedback Scheme through a Virtual

Learning Environment .. 61

Héctor Jiménez‑Salazar, Tiburcio Moreno‑Olivos,

Alfredo Mateos‑Papis

Emotion Recognition for Education using Sentiment Analysis 71

María Lucia Barron‑Estrada, Ramón Zatarain‑Cabada,

Raúl Oramas‑Bustillos

Fuzzy System Inference and Fuzzy Cognitive Maps for a Cognitive Tutor

of Algebra ... 81

Blanca‑Estela Pedroza‑Mendez, Carlos‑Alberto Reyes‑García,

Juan Manuel González‑Calleros, Josefina Guerrero‑García

7

ISSN 1870-4069

Research in Computing Science 148(5), 2019ISSN 1870-4069

Methodology for Automatic Identification of Emotions in Learning

Environments .. 89

Yesenia N. González Meneses, Josefina Guerrero García,

Carlos Alberto Reyes García, Iván Olmos Pineda,

Juan Manuel González Calleros

Study of Spontaneous and Acted Learn‑Related Emotions Through Facial

Expressions and Galvanic Skin Response .. 97

Andres Mitre‑Ortiz, Hugo Mitre‑Hernandez

Synaptix: A Web Platform based on Gamification Techniques for the Study

of Clinical Cases ... 107

Omar López Chávez, Ignacio N. Márquez, Luis‑Felipe Rodríguez,

Jorge G. Mendoza León

Towards Personalized Summaries in Spanish based on Learning Styles

Theory ... 115

Uriel Ramírez, Yasmín Hernández, Alicia Martínez

Towards a Learning Ecosystem for Linemen Training .. 125

Guillermo Santamaría‑Bonfil

Using a CTF Tournament for Reinforcing Learned Skills in Cybersecurity

Course ... 133

Hugo Gonzalez, Rafael Llamas, Omar Montaño

8Research in Computing Science 148(5), 2019 ISSN 1870-4069

Synaptix: A Web Platform based on
Gamification Techniques for the Study of

Clinical Cases

Omar López Chávez, Ignacio N. Márquez, Luis-Felipe Rodŕıguez,
Jorge G. Mendoza León

Sonora Institute of Techonology, Department of Computer and Design, Mexico
omarlopch@gmail.com, ignacio nmarquez@hotmail.com,

luis.rodriguez@itson.edu.mx, jorge.mendoza@itson.edu.mx

Abstract. In this paper we present a Web platform designed to allow
medical students and practitioners to study clinical cases on their own.
The main objective of this proposal is to address key problems inherent in
the traditional study of clinical cases by providing a tool that implements
techniques and elements of gamification, simulation, and serious games.
The proposed platform offers an improved learning experience through
a virtual environment that provides an alternative method for training
and interpretation of clinical cases for medical examinations. Medical
students and practitioners can play the role of a real doctor in a simulated
office. In particular, the platform allows medical students and practi-
tioners to learn through their mistakes without hurting human beings.
In addition, this platform is designed to allow users to add new clinical
cases and make them available for study. The platform was validated in a
local hospital by 8 medical practitioners. The participants indicated that
the platform design, the tutorials included, and the ease of use factors
are satisfactory.

Keywords: medical student, clinical case, gamification, simulation, se-
rious game.

1 Introduction

Gamification is the process of changing a set of traditional actions to an attrac-
tive gaming experience for the user [13]. Matallaoui et al. [11] define gamification
as “the use of game design elements in a context not related to the game, is an
interdisciplinary tool, where users are motivated to achieve certain behavioral or
psychological results”. Gamification also enables the development of immersive
games in virtual environments in which users are encouraged to perform desired
actions. In the academic field, gamification serves as a tool to facilitate teaching
and learning processes through collaborative environments [2].

Serious games (SGs) have a high impact as an instructional tool that benefits
from traditional game concepts and information and communication technolo-
gies. Serious games have allowed the implementation of simulations and realistic

107

ISSN 1870-4069

Research in Computing Science 148(5), 2019pp. 107–114; rec. 2018-09-06; acc. 2018-10-07

virtual environments, where players can experience adventures while acquiring,
practicing, and verifying knowledge. This represents a significant opportunity
for 21st century educators and trainers to improve their educational tools [1].

The traditional method for studying clinical cases is through information
sources such as books, articles, and automated tests. However, this method
usually leads medical students to a state of saturation, stress, and anxiety
given that, for example, the quantity and complexity of clinical cases to study
in exam periods is high. Moreover, the feedback received from this type of
information sources is limited. The study of clinical cases by medical students
and practitioners also takes advantage of the monitoring of patients in hospitals.
This study of clinical cases requires observation and analysis for long periods of
patients with diverse conditions, diseases, signs, and symptoms [9]. However, in
hospitals such as those known as “third level hospitals”, only critical patients
have long stays. The majority of patients are hospitalized for short periods of
time, which makes it difficult the generation and access of medical students to
a greater amount of knowledge that improves their learning experience and the
acquisition of skills related to clinical cases that depend on hospitalized patients.

Lifshitz [8] indicates that clinical cases can not be learned through memo-
rization or readings or through distance education strategies. In fact, the anal-
ysis of clinical cases has a very strong affective component because it implies
confrontation with illness and suffering. The discussion about the limits of the
teaching of clinical cases has not been solved, but this type of learning usu-
ally requires abilities for communication, physical examination, treatment, and
clinical reasoning. Lifshitz [8] also proposes a well defined structure to organize
and study clinical cases: 1) the approach to the patient, 2) the collection of
information, 3) the analysis of the information collected, 4) clinical procedures, 5)
the diagnostic decision, 6) the decision therapist, and 7) the decision Prognosis.
In this context, although there is great interest in the design and application
of guidelines in clinical practices for the prevention and care of diverse health
situations, greater attention must be paid to its implementation and effectiveness
in various practical scenarios [5].

The simulation of clinical cases involves a set of techniques that facilitate
medical students and practitioners the acquisition of knowledge and skills. In
particular, techniques and methods from fields such as artificial intelligence,
virtual and augmented reality, and human-computer interaction have enabled the
development of platforms that incorporate virtual scenarios, simulation models,
and multimedia materials to simulate different real situations (e.g., for the
analysis of clinical cases) [4]. Although simulation platforms do not replace the
real scenarios, these allow students to learn and practice in controlled media,
contributing to improve their skills and decrease the anxiety when performing an
exam or procedure. This type of platform also accelerates learning and enriches
the true interactions with the patients, helping medical students to avoid states
of saturation experienced with traditional learning methods [9].

In this paper, we present a platform designed to allow medical students and
practitioners to study clinical cases on their own. This platform represents an

108

Omar López Chávez, Ignacio N. Márquez, Luis-Felipe Rodríguez, Jorge G. Mendoza León

Research in Computing Science 148(5), 2019 ISSN 1870-4069

attempt to address key problems inherent in the traditional study of clinical cases
by providing a tool that implements techniques and elements of gamification,
simulation, and serious games. Its design takes into account the elements and
strategies that according to medical students and practitioners are required to
learn and practice clinical cases [10]. The paper is structured as follows. In
Section 2 we discuss related work. The proposed platform and corresponding
validation are presented in Section 3 and Section 4, respectively. Finally, con-
cluding remarks and future work are discussed in Section 5.

2 Related Work

The website The New England Journal of Medicine presents interactive medical
clinic cases designed according to the following interaction process: presentation
of the case, medical history of the patient, information of the physical exami-
nation, and finally, performs a test to provide feedback and solutions of correct
and incorrect answers [6]. However, although this website shows to users the
percentage of the result and the studies carried out, key elements of gamification
and serious games are not considered such as dashboard, unlock, and challenge.
Moreover, the interaction is based on text and 2D graphics, leaving aside the
implementation of 3D scenarios and simulations. The inclusion of additional
clinical cases by users is not allowed.

Nevin et al. [12] developed the Kaizen-Internal Medicine (Kaizen-IM) soft-
ware that includes elements of gamification. This tool involved a large number of
residents in a medical contest that facilitated the acquisition of new knowledge in
the academic period 2012-2013 in two training programs IM (internal medicine)
in the USA: the residency program in Internal Medicine at the University of
Alabama at Birmingham (UAB) and the University of Alabama Program at
Huntsville (UAH). The data was recorded at participant level and question.
The analyzes focused on the acceptance, use, and determination of the factors
associated with the loss of players (attrition) and the retention of knowledge.
The Kaizen-IM data provided information on modifiable factors associated with
student attrition and retention of knowledge that can serve to further enhance
the educational benefits of this strategy for students. This tool is an attempt
to demonstrate the benefits of incorporating elements of gamification in the
learning process of medical students. However, this software does not implement
3D simulations, but is based on strategies based on questions and answers.

Leba et al. [7] proposed an application for the training of medical students
in the field of anatomy with computed tomography images, using elements of
gamification, simulation, and serious games. It was designed in the context of an
educational software. This proposal represents an attempt to support modern
and practical methods of examination based on real cases useful for medical
students and teachers. However, this application for training was not validated
in a case study, the authors proposed only design guidelines.

109

Synaptix: A Web Platform based on Gamification Techniques for the Study of Clinical Cases

Research in Computing Science 148(5), 2019ISSN 1870-4069

3 Synaptix

The Sypnatix platform was designed for the study of clinical cases that follow
the clinical practice guide of the federal government of Mexico [3]. Synaptix
implements elements and techniques of gamification, simulation, and serious
games. In particular, its design is based on a previous study by Marquez et al.
[10] in which data was collected from medical students and practitioners in order
to 1) identify key elements and learning strategies for the study and practice of
clinical cases, and 2) define how these elements and strategies should be taken
into account in the design of a learning platform that incorporates elements of
gamification for the study of clinical cases (see Figure 1) [10].

Fig. 1. Elements involved in the study of clinical cases [10].

The Synaptix platform incorporates the following elements of gamification
(which are common elements reported in the literature [14]):

– Points: represent the way in which the player is observed, classified, and
guided. In Synaptix, the user starts with 0 points. The points are cumulative
and depend on the correct answers provided by the user.

– Badges: mark the fulfillment of goals and the constant progress of the game.
Badges are activated as the user completes clinical cases on Synaptix.

– Levels: a marker for players to know where they are in a gaming experience.
In Synaptix, levels are activated as progress is made in solving clinical cases.

– Dashboard: an ordered list of names and its corresponding score. Synaptix
makes available information about the achievements of each user.

– Unlock: allows players to access another achievement after certain require-
ments are met. In Synaptix, objectives are unlocked as the user resolves
clinical cases.

– Challenges: offer players an address so they know what to do within the
world of the gamified experience. In Synaptix, the challenges are associated
with obtaining badges.

110

Omar López Chávez, Ignacio N. Márquez, Luis-Felipe Rodríguez, Jorge G. Mendoza León

Research in Computing Science 148(5), 2019 ISSN 1870-4069

Fig. 2. The architecture of Synaptix.

Figure 2 shows the main components of the Sypnatix’s architecture and
their relationship: 1) the elements of gamification mentioned above, 2) a 3D
virtual scenario, and 3) components related to the data management. These
components create an interactive experience by enabling medical students to
acquire, practice, and verify knowledge, which are key elements of SG and
simulation.

Fig. 3. Simulation of a doctor office and a virtual patient.

The virtual scenario provided by Synaptix for the study and practice clinical
cases is shown in Figure 3. This virtual scenario simulates a medical office and a
virtual patient. Medical students interact with the virtual patient by physically
examining, for example, its lungs and head. Additional information related to
clinical records or results of clinical studies (data that is sometimes taken into
account in clinical cases) is also displayed in the scenario. After the medical
student analyzed the data provided in the clinical case (i.e., physically examined
the virtual patient and its medical records), a series of questions and possible

111

Synaptix: A Web Platform based on Gamification Techniques for the Study of Clinical Cases

Research in Computing Science 148(5), 2019ISSN 1870-4069

answers are displayed to evaluate whether the diagnosis and treatment suggested
by the student are correct. Synaptix provides feedback to medical students once
an answer is submitted. If the answer is incorrect, feedback about medications
or treatments is provided. The points obtained and the assigned badges are
activated in the user’s profile as shown in Figure 4.

Fig. 4. Dashboards that show the scores and points obtained by medical students.

Although Synaptix is designed for the study of clinical cases related to the
areas of internal medicine, surgery, gynecology and obstetrics, and pediatrics,
currently only clinical cases of internal medicines are included. Nevertheless,
Synaptix allows medical practitioners to include new clinical cases which are
then available for their analysis by medical students. The tools used in the devel-
opment of the Synaptix Web platform were Unity game development platform,
Php scripting language, and the Mysql database server. In order to carry out
the tests, it was posted on a web server: http://arevolution.com.mx/synaptix/

4 Validation

Synaptix was validated in a private local hospital by 8 medical students and
practitioners (4 female and 4 male). The validation session consisted of an
introduction by the authors about the functionality and characteristics of the
platform. Afterwards, the participants used the platform to practice available
clinical cases and answered a questionnaire. The instrument consisted of 29
items to measure 1) the design of the platform, 2) the instructions provided
by Synaptix, and 3) easy of use factor. Figure 5 and Figure 6 show the results
obtained in this evaluation phase.

The comments provided by participants include the following: 1) provide
further feedback or suggest additional information sources to the user once a
clinical case is carried out, 2) allow the user to make more questions to the virtual
patient, 3) indicate the specific areas the medical student needs to reinforce in
order to achieve better results, 4) provide greater details in the diagnosis, 5)
include better medical images, and 6) include more references about the clinical
cases presented. Finally, some participants emphasized the importance of badges
and individual scores as incentives.

112

Omar López Chávez, Ignacio N. Márquez, Luis-Felipe Rodríguez, Jorge G. Mendoza León

Research in Computing Science 148(5), 2019 ISSN 1870-4069

Fig. 5. Results of evaluating the design of Synaptix.

Fig. 6. Results of evaluating the easy of use of Synaptix.

5 Conclusions and Future Work

The main contribution of this paper is the design and implementation of a
platform that 1) incorporates elements of gamification, serious games, and sim-
ulation, and 2) takes into account the elements and strategies that according
to medical students and practitioners are required to learn and practice clinical
cases. The Synaptix Web platform is a gamified tool that attempts to serve
as an alternative method for the study of clinical cases, avoiding states of
saturation, fatigue, and anxiety in medical students and practitioners. Synaptix
was validated in a private local hospital by 8 medical students and practitioners.
The results demonstrated that participants find that the factors associated with
the design and easy of use of the platform is in general satisfactory. Future
research involves an evaluation to measure complex individual’s aspects such as
motivation, learning, and user engagement as well as the incorporation of virtual

113

Synaptix: A Web Platform based on Gamification Techniques for the Study of Clinical Cases

Research in Computing Science 148(5), 2019ISSN 1870-4069

reality and augmented reality components in order to create more immersive
scenarios. Furthermore, AI techniques will be incorporated to enable the virtual
patients to develop some human-like behaviors.

Acknowledgment. This work was supported by PFCE 2018.

References

1. Arnab, S., Lim, T., Carvalho, M.B., Bellotti, F., De Freitas, S., Louchart, S.,
Suttie, N., Berta, R., De Gloria, A.: Mapping learning and game mechanics for
serious games analysis. British Journal of Educational Technology 46(2), 391–411
(2015)

2. Burke, B.: Gamify: How gamification motivates people to do extraordinary things.
Routledge (2016)

3. Cenetec: Clinical practice guide. https://cenetec-difusion.com/gpc-sns/

(2018)
4. Chen, L., Day, T.W., Tang, W., John, N.W.: Recent developments and future

challenges in medical mixed reality. In: IEEE International Symposium on Mixed
and Augmented Reality (ISMAR). pp. 123–135. IEEE (2017)

5. DiCenso, A., Guyatt, G., Ciliska, D.: Evidence-Based Nursing-E-Book: A Guide
to Clinical Practice. Elsevier Health Sciences (2014)

6. Group, N.: interactive medical case. https://www.nejm.org/multimedia/

interactive-medical-case (2018)
7. Leba, M., Ionica, A., Apostu, D.: Educational software based on gamification

techniques for medical students. In: Proceedings of the 5th International
Conference on Applied Informatics and Computer Theory (AICT). pp. 225–230
(2014)

8. Lifshitz, A.: La nueva cĺınica. Intersistemas Editores (2014)
9. Makransky, G., Bonde, M.T., Wulff, J.S., Wandall, J., Hood, M., Creed, P.A.,

Bache, I., Silahtaroglu, A., Nørremølle, A.: Simulation based virtual learning
environment in medical genetics counseling: an example of bridging the gap
between theory and practice in medical education. BMC medical education 16(1),
98–107 (2016)

10. Márquez, I., Mendoza, J.G., Rodŕıguez, L.F.: Identificación de elementos clave en
el estudio de casos cĺınicos para su gamificación. In: Prieto, M., Pech, S., Francesa,
A. (eds.) Tecnoloǵıas y Aprendizaje. Investigación y Práctica, pp. 132–139 (2018)

11. Matallaoui, A., Herzig, P., Zarnekow, R.: Model-driven serious game development
integration of the gamification modeling language gaml with unity. In: 48th Hawaii
International Conference on System Sciences (HICSS). pp. 643–651. IEEE (2015)

12. Nevin, C.R., Westfall, A.O., Rodriguez, J.M., Dempsey, D.M., Cherrington, A.,
Roy, B., Patel, M., Willig, J.H.: Gamification as a tool for enhancing graduate
medical education. Postgraduate medical journal pp. 121–130 (2014)

13. Robson, K., Plangger, K., Kietzmann, J.H., McCarthy, I., Pitt, L.: Is it all a game?
understanding the principles of gamification. Business Horizons 58(4), 411–420
(2015)

14. Vargas-Enŕıquez, J., Garćıa-Mundo, L., Genero, M., Piattini, M.: Análisis de uso
de la gamificación en la enseñanza de la informática. In: Actas de las XXI Jornadas
de la Enseñanza Universitaria de la Informática. pp. 105–112. Universitat Oberta
La Salle (2015)

114

Omar López Chávez, Ignacio N. Márquez, Luis-Felipe Rodríguez, Jorge G. Mendoza León

Research in Computing Science 148(5), 2019 ISSN 1870-4069

Information and Software Technology 112 (2019) 68–82

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Towards a reduction in architectural knowledge vaporization during agile

global software development

Gilberto Borrego a , ∗ , Alberto L. Morán a , Ramón R. Palacio b , Aurora Vizcaíno c , Félix O. García c

a Universidad Autónoma de Baja California, Mexico
b Instituto Tecnológico de Sonora, Mexico
c Universidad Castilla-La Mancha, Spain

a r t i c l e i n f o

Keywords:

Agile global software development

Architectural knowledge

Knowledge vaporization

Documentation debt

a b s t r a c t

Context: The adoption of agile methods is a trend in global software development (GSD), but may result in many

challenges. One important challenge is architectural knowledge (AK) management, since agile developers pre-

fer sharing knowledge through face-to-face interactions, while in GSD the preferred manner is documents. Agile

knowledge-sharing practices tend to predominate in GSD companies that practice agile development (AGSD),

leading to a lack of documents, such as architectural designs, data models, deployment specifications, etc., re-

sulting in the loss of AK over time, i.e., it vaporizes.

Objective: In a previous study, we found that there is important AK in the log files of unstructured textual electronic

media (UTEM), such as instant messengers, emails, forums, etc., which are the preferred means employed in AGSD

to contact remote teammates. The objective of this paper is to present and evaluate a proposal with which to

recover AK from UTEM logs. We developed and evaluated a prototype that implements our proposal in order to

determine its feasibility.

Method: The evaluation was performed by conducting a study with agile/global developers and students, who

used the prototype and different UTEM to execute tasks that emulate common situations concerning AGSD teams’

lack of documentation during development phases.

Results: Our prototype was considered a useful, usable and unobtrusive tool when retrieving AK from UTEM logs.

The participants also preferred our prototype when searching for AK and found AK faster with the prototype than

with UTEM when the origin of the AK required was unknown.

Conclusion: The participants’ performance and perceptions when using our prototype provided evidence that

our proposal could reduce AK vaporization in AGSD environments. These results encourage us to evaluate our

proposal in a long-term test as future work.

1. Introduction

Agile and global software development (AGSD) is currently an im-

portant trend [1] . In fact, VersionOne of the 11th annual state of agile

report 1 states that 86% of the respondents had distributed teams practic-

ing agile software development (ASD). AGSD leads to many challenges,

given the inherent nature of both paradigms: ASD and global software

development (GSD). On the one hand, GSD communication is commonly

based on documents, i.e.,explicit knowledge, that decrease the effect of

the four distances of this paradigm (physical, temporal, linguistic and

cultural) [2] . On the other, the agile manifesto [3] states that in ASD,

face-to-face interactions are preferable to following a strict communi-

cation processes, and working software is preferable to comprehensive

∗ Correspondence author.

E-mail address: gilberto.borrego@uabc.edu.mx (G. Borrego).
1 https://explore.versionone.com/state-of-agile/versionone-11th-annual-

state-of-agile-report-2 .

documentation, leaving the interpretation of the term “comprehensive ”

to each agile team [4] . In fact, ASD suggests that most documentation

can be replaced by enhancing informal communication, i.e., a stronger

emphasis on tacit knowledge rather than explicit knowledge [5] . How-

ever, prioritizing communication in ASD does not mean disregarding

formal documentation [6] . This shows an internal antagonism within

AGSD, since tacit knowledge is preferred in ASD (face-to-face interac-

tion) and explicit knowledge (based on documents) is preferred in GSD.

In AGSD teams, tacit knowledge tends to predominate over explicit

knowledge [6–8] , leading to a lack of documents concerning architec-

tural design, user manuals, data models, updated requirements specifi-

cation, etc., known as documentation debt [9] . AGSD teams are affected

by documentation debt, particularly when there is insufficient explicit

https://doi.org/10.1016/j.infsof.2019.04.008

Received 23 June 2018; Received in revised form 22 March 2019; Accepted 17 April 2019

Available online 23 April 2019

0950-5849/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.infsof.2019.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.04.008&domain=pdf
mailto:gilberto.borrego@uabc.edu.mx
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://doi.org/10.1016/j.infsof.2019.04.008

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

architectural knowledge (AK). AK is composed of architectural design

(including fundamental system concepts in its environment, embodied

in its elements, relationships, and in the principles of its design and

evolution [10]) and of the design decisions and rationale used to attain

architectural solutions [11] .

One of the main problems in GSD is generally the lack of explicit

knowledge (including AK) when stakeholders attempt to resolve pre-

viously presented problems, especially when this occurs in small and

medium companies [12,13] . The most significant causes of a lack of ex-

plicit AK in AGSD teams are: (1) the most popular agile methods, 2 Scrum

and XP [14,15] , specify AK in a very lax manner, leading to documents

with informal notations [4] ; (2) the inherent time pressures of ASD cause

the omission of appropriate documentation [16] , and (3) agile develop-

ers consider that documentation is a secondary and non-creative activity

[17] .

In co-located ASD, the lack of AK documentation is mitigated by

developers’ daily face-to-face interactions. In AGSD teams, however,

the lack of AK documentation is often mitigated by communicating

with remote teammates using unstructured textual electronic media

(UTEM), such as emails, forums, comments boards, instant messenger,

etc., mainly because UTEM reduce the language gap [18] . If remote

teammates are unavailable or are unable to answer their questions, ag-

ile/global developers usually attempt to obtain answers by analyzing

source code [19] , which is time consuming. Furthermore, the knowl-

edge obtained is generally unstructured, incomplete and inconsistent

[20] , which does not guarantee that the software will evolve as planned

at design time.

Furthermore, literature reports that UTEM logs contain important

AK for agile/global developers [19,21] , but that is unstructured, inac-

cessible, dispersed and prone to be lost over time, i.e., prone to be vapor-

ized [22] . Moreover, in AGSD teams, requirements and user stories are

usually the only documented knowledge referring to software develop-

ment tasks [19] ; there are also informal diagrams, but they are created

only as an aid to problem understanding and are, therefore, considered

as disposable documents. Furthermore, agile/global developers usually

attempt to obtain AK from UTEM logs to mitigate this lack of documen-

tation [19] . However, the problem is that UTEM are not designed to

search AK, and developers usually use more than one UTEM to share

knowledge, signifying there is no single point at which to find AK. It is,

therefore, important that agile/global developers have efficient means

to access the AK in UTEM logs to reduce AK vaporization.

In this paper, we present the AK Condensation concept, conceived

as a means to reduce AK vaporization in AGSD by taking advantage

of the knowledge stored in UTEM logs, and by giving agile/global

developers the means to search for the AK contained in the afore-

mentioned logs at a single point. This concept was implemented in a

tool evaluated by agile/global developers and students to determine

its feasibility. The remainder of this paper is organized as follows:

Section 2 presents the related works, while the concept of AK Conden-

sation and its implementation are presented in Section 3 . Section 4 de-

scribes the evaluation method, while Section 5 presents the evaluation

results and Section 6 shows the threats to validity. Finally, a discus-

sion of the results and our conclusion are presented in Sections 7 and 8 ,

respectively.

2. Related work

2.1. Architectural knowledge management in agile and global software

development

Knowledge management is currently an important part of any soft-

ware development process. Dalkir [23] proposed that KM consists of cre-

2 https://explore.versionone.com/state-of-agile/versionone-11th-annual-

state-of-agile-report-2 .

ating/capturing, sharing/disseminating and acquiring/applying knowl-

edge assets, where: creating/capturing refers to developing new knowl-

edge from experience and/or explicit knowledge, and then coding the

knowledge in an agreed format; sharing/disseminating refers to storing

knowledge in a common repository, sending it to the appropriate peo-

ple or sharing it during a training session, and acquiring/applying refers

to the learning process and using new knowledge in practice, with the

possibility of creating knowledge to start the cycle again. This defini-

tion could, therefore, be adapted to define AKM as the discipline of cre-

ating/capturing, sharing/disseminating and acquiring/applying a soft-

ware process’s AK assets. This adaptation is very close to Farenhorst and

de Boer [24] AKM’s definition, which states that the aim of AKM is to

codify software architects’ tacit knowledge explicitly in either structured

or semi-structured knowledge bases.

KM is a challenge in AGSD [25–27] , signifying that AKM is also a

challenge. A critical part of AKM is the process of knowledge capturing,

because the AGSD environment [16] and the agile developers’ attitudes

[17] cause documentation debt [9] . Since an AGSD environment leads

to a lack of captured AK, then the AKM phases of sharing/disseminating

and acquiring/applying are also affected, because AK is shared and ac-

quired on the basis of inappropriate documentation or even tacit knowl-

edge.

Several works address AKM in software engineering [28–32] , in

GSD [33–37] , and even in ASD [6,38,39] ; however, these works do

not cover AGSD environments. We, therefore, conducted a systematic

mapping review (reported elsewhere [40]), in which we identified nine

approaches used to manage AK that were grouped into three areas: (1)

artifact-based, (2) communication-based, and (3) methodology-based.

The artifact-based documentation area refers to the use of software de-

velopment support (repositories, wikis and groupware) to share AK,

auto-generated documentation based on communication analysis (re-

lating to emails and code repositories), and lightweight approaches

to register architecture designs and decisions. The communication-

based area refers to the use of videoconference and UTEM to dis-

cuss and share knowledge, and the use of smartboards or elec-

tronic displays to show information about project architecture. The

methodology-based area refers to agile method modification by intro-

ducing an architecting phase or an architect role to manage projects’

AK.

We additionally observed that the papers reviewed evenly support

the three phases of the integrated KM cycle [23] (Capture/Creation

– 35%, Sharing/Dissemination – 33%, and Acquisition/Application –

32%). We analyzed the cases of the Capture/Creation phase using

the states of knowledge [41] : tacit knowledge, which is in the stake-

holders’ minds; documented knowledge, which is codified in an in-

formal/ad hoc manner, and formalized knowledge, which is codified

in a standardized structure. We observed that only 7% of all the pa-

pers report a formalized means of coding AK, 11% report a docu-

mented means, 4% report a tacit means, and 13% do not specify how

AK is captured. Most of the papers reporting a way in which to cap-

ture AK employ a volatile means to do so, since AK remains tacit or

is informally codified. AK could, therefore, lose meaning over time

or in another context, and there is consequently a lack of adequate

means to capture AK in AGSD environments that ensure the duration of

AK.

2.2. Architectural knowledge management solutions based on social tagging

As stated previously, this paper proposes the concept of AK Con-

densation (see Section 3), implemented using a prototype based on tag-

ging personal interactions using UTEM in real time, as a means to clas-

sify AK so as to ease its subsequent retrieval. Researchers and software

companies have chosen social tagging as a lightweight and unobtrusive

manner to organize unstructured or dispersed data or to add meaning

and metadata to software development environments, to recover knowl-

edge that is generally hard to find. To the best of our knowledge, seven

69

https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

Table 1

Tools that use social tagging in software development reported in literature (A = Analysis, D = Design, I = Implementation, T = Testing, M = Maintenance, Full = Cover all
the phases). ArchiKCo refers to the prototype presented in this paper, which was designed for AGSD to cover any development phase and was focused on tagging

UTEM interactions, where valuable AK is located. ArchiKCo tags are linked to base tags and include an auto-complete mechanism to ease the tagging action during

the developers’ interactions in order to avoid tag explosion. Finally, ArchiKCo has different parameters to perform AK retrieval, which other tools do not consider.

See Section 3.2 for more ArchiKco details. ∗ Parsed by TagSEA.

Tool name Coverage Tagging Knowledge retrieval Tool type

Environment Phases Items to tag Mechanism Type

IBM® Rational®

Jazz® [44]

Agile distributed Full Artifacts and

workitems

Auto-completed Free Free text and tags Commercial

TagSEA [45] Distributed I Sourcecode Auto-completed Free Based on waypoints

and tags

Research open

source

Trac [69] Distributed I, T Version control

and Tickets (bugs)

Free Free Free text Open source

eMoose [65] Not defined I Source code Auto-completed ∗ Free Contextual “Push ” Research

CodeSnippets [70] Not defined I Code Snippets in

Source code

Free Free Based on tags Open source

Paul et al. tool

[71]

Open source D, I Software

components

Free Free Free text associated

with tags

Research

TAGGER [42] Distributed A UTEM interactions Free Linked to base tags Not reported Research

ArchiKCo Agile distributed Full UTEM interactions Auto-completed Linked to base tags Free text, tags, dates,

remittent, recipient,

UTEM source

Research

prototype

tools use social tagging (see Table 1). Most of these tagging tools are

designed to support the implementation phase and are focused on tag-

ging source code, software components or version control entries, i.e.,

they help manage AK. Only TAGGER [42] was designed to tag personal

interactions in UTEM, but is focused on capturing domain knowledge

during the analysis phase. Moreover, most of these tools are oriented

toward a distributed development environment, and only IBM® Ratio-

nal® Jazz® was evaluated in ASD. Our prototype, ArchiKCo (explained

in Section 3.2), is shown in Table 1 in order to contrast its characteris-

tics.

Regarding the implementation of tagging, only three tools have an

auto-complete mechanism to aid during tag assignment. Moreover, most

of them use free tags, i.e., there are no fixed or predefined tags to as-

sign, and users are, therefore, free to write or compose any tag. Free

tagging and unassisted tag assignment could lead to tagging difficulties

and information retrieval problems caused by: (1) a huge number of

tags, known as tag explosion; (2) differences in the interpretation of a

tag’s meaning; (3) an incomplete context in which to understand a tag;

(4) the locality of tags, i.e., tags based on a team’s jargon; (5) tags that

only make sense when used together, known as composite tags, and (6)

tags with the same meaning but written differently, known as obscure

similarity [43] .

Despite the above problems, literature reports that developers pre-

fer using free tags because of their low cognitive load for everyday

work [44,45] . Some efforts have been made to develop auto-tagging

mechanisms [46] or tag-based recommender systems [43,47] to re-

duce developers’ cognitive loads to an even greater extent. Sohan et al.

[46] auto-tagging mechanism relates email messages to user stories in

ASD projects with an accuracy of 70%; however, the remaining 30% of

error could cause knowledge retrieval problems. Moreover, the tag rec-

ommender systems TagRec [47] and LS 3 AutoTagger [43] are promis-

ing means to complement tag assignment and enhance the basic auto-

complete mechanism.

Most of the knowledge retrieval mechanisms shown in Table 1 are

based on tags and/or free text, except eMoose, which “pushes ” AK to

the users depending on the coding context. No tools except ArchiKCo

base their knowledge retrieval mechanisms on dates, people and origins

(i.e., a ticket, source code, or any other artifact). This is relevant, since

agile/global developers struggle to find AK because they do not usually

remember who originally provided it, or where and when a certain piece

of AK was posted [19] .

2.3. Architectural knowledge vaporization consequences in agile and global

software development

The major challenges in AGSD are related to communication, cul-

ture, trusted relationships and KM [1,48] . A key success factor in any

software development project is the correct appliance of KM [49] , and

consequently of AKM. As stated in Section 2.1 , AKM is still a challenge in

AGSD because most AK remains tacit or documented and could, there-

fore, lose meaning over time or in another context, i.e., it is prone to va-

porization. It could be argued that AK vaporization in ASD is mitigated

by practicing shared source code ownership [50] , thus making devel-

opers aware of the project’s AK. However, the four distances inherent

in GSD cause inefficient AK sharing, since there are less opportunities

for casual interaction [51] and informal awareness [52] . Shared source

code ownership does not, therefore, have the same effect in AGSD.

AK vaporization could cause the following problems in AGSD

[53,54] : (1) poorly understood requirements and technical solutions;

(2) a lack of knowledge transfer between teams; (3) defects in software

evolution and maintenance, i.e., architectural technical debt [55] ; (4) a

lack of visibility in project monitoring, and (5) time wasted by experts

answering the same questions on certain issues and attempting to find

solutions to problems that have already been solved. A consequence of

the last point is that team members could annoy experts: constant ques-

tions could lead to an erosion in interpersonal relationships, which could

affect the knowledge flow [56] . Interpersonal relationship erosion could

be critical when building trusting relationships, which is important for

any agile team. All the aforementioned problems and situations show

the importance of addressing AK vaporization in AGSD. Our approach

to mitigate this phenomenon is presented as follows.

3. A proposal of architectural knowledge condensation

As stated above, AK vaporization hinders the KM cycle because there

is documentation debt. In a previous study [19] , we found that UTEM

logs contain valuable documented AK, and that developers attempt to

recover it from those sources. Finding AK in UTEM logs is difficult be-

cause these media are not designed to find knowledge and because AK

storage is unstructured. Moreover, it is difficult to retrieve AK because

it is dispersed among different UTEM, which developers use to commu-

nicate. In this section, we present our contribution to AKM in AGSD,

proposing a means of structuring and retrieving the AK shared using

70

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

Fig. 1. UML state diagram representing SECI model with documented and formalized sub-states, and extended with the vaporization and condensation concepts.

States and transitions in bold are product of our SECI model extension.

UTEM, in which AK structuring is based on a lightweight classification

mechanism. This proposal is called AK Condensation – the opposite of

AK vaporization. We additionally present a prototype that implements

AK Condensation in order to evaluate the proposal’s feasibility.

3.1. Conceptual definition

Explaining the AK Condensation concept implies exploring the va-

porization concept in greater depth. Various authors define AK va-

porization as the disappearance of AK owing to documentation debt

[22,57,58] . However, we propose that vaporization could be a state just

before AK disappears. In AGSD, developers attempt to find AK in UTEM

logs when AK has evaporated from their minds. AK is, therefore, still re-

coverable because UTEM logs contain AK traces [19] , which could help

them infer/remember AK. In order to show our concept of AK vapor-

ization and condensation, we extend the SECI model [41] . Fig. 1 shows

the AK vaporized state, which may occur when developers forget tacit

AK or cannot find AK in any kind of unstructured repository (e.g. UTEM

logs). We propose that vaporized AK can be recovered when teammates

help developers remember a piece of AK, or when unstructured AK or

vaporized AK are gathered and structured to ease their retrieval (AK

Condensation). Fig. 1 also shows that condensation is not a means to

convert vaporized AK into AK in formal notation, but simply a step for-

ward to ease AK formalization and reduce AK loss; we consider there

still is a big gap between documented AK in UTEM and formalized AK.

AK Condensation could, therefore, be implemented by considering the

following elements:

1. Accessible UTEM logs . All stakeholders must be able to access

all information from UTEM logs and thus be able to access all the

AK being shared among them.

2. UTEM log classification mechanism . There must be a classifi-

cation mechanism to structure the UTEM log information in order

to ease AK retrieval. UTEM include features to find information

in their logs. However, these features do not find AK efficiently

[19] . In addition, developers do not usually remember the ex-

act terms/concepts in which AK was shared and consequently

need a semantic structure associated with the UTEM log to help

them find AK without knowing the exact term to search for. In

addition, this semantic structure would ease the transition from

documented AK and formalized AK in later stages.

3. AK searching mechanism . All stakeholders could use the classi-

fication scheme to find valuable AK with less effort in the struc-

tured UTEM logs. The searching mechanism could include any

other search parameter to ease AK retrieval, e.g., date period,

message sender or message author.

Since AK Condensation is an abstract definition, there could be dif-

ferent ways to develop concrete instances. The following sub-section

explains how we implemented a technological solution based on this

concept.

3.2. Prototype of architectural knowledge condenser

In order to prove the feasibility of AK Condensation, we instantiated

this concept using a technological solution called ArchiKCo, evaluated

by professional developers and students (see Section 4). We based the

ArchiKCo classification mechanism on social tagging, which can be ap-

plied during UTEM interactions. Social tagging is a lightweight and pop-

ular means to classify knowledge, which has been successfully used by

other authors (see Section 2.2). Furthermore, in [59] we observed that

social tagging is not a great effort for agile/distributed developers, and

that they are interested in tagging UTEM messages in order to retrieve

AK in the future.

We based ArchiKCo on Windows and Skype 3 (as the UTEM log

source), since most of the subjects that were able to evaluate it use them

both in their daily work. Fig. 2 depicts the ArchiKCo operation, show-

ing the activities that implement the three elements of AK Condensation,

along with the common situations described by agile/global developers

(depicted as dialog clouds in Fig. 2); we explain how ArchiKCo imple-

ments each element below.

3.2.1. Accessible UTEM log information

We implemented this part using a Gatherer Service (see Fig. 2 , part

A) to periodically extract and send the Skype interaction logs to a

shared repository in the cloud (depicted as a UTEM Messages database

in Fig. 2). We used Algolia 4 server as a shared repository, since it pro-

vides robust indexing functions that ease the development of a searcher.

3.2.2. UTEM log classification mechanism

In order to avoid the problems related to free tagging [43] , we im-

plemented a semi-fixed tagging mechanism (successfully evaluated in

[59]) that allows developers to add user tags with a web application

called Tags Administrator (see Fig. 2 , part B). We propose that develop-

ers perform this activity during a development cycle planning meeting,

3 https://www.skype.com/ .
4 https://www.algolia.com/ .

71

https://www.skype.com/
https://www.algolia.com/

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

Fig. 2. ArchiKCo rich picture with activities (ovals) corresponding to the three elements of AK Condensation concept, A = Accessible UTEM logs information,

B = UTEM logs Classification mechanism, C = AK searching mechanism. Bulleted lines represent links between activities and who performs them. Arrowed lines
represent links between activities and artifacts. There are three types of artifacts: resulting artifacts (activities’ outgoing arrows), source artifacts (activities’ ingoing

arrows), and interacting artifacts (linked with double arrow lines).

Fig. 3. Conceptual model based on UML, representing the aspects involved in AK articulation through use of UTEM by AGSD teams (reproduced from [19]).

since they would already know the key terms to be used during the next

cycle. Every custom tag must be related to a meta-tag from an AK Model,

which represents the AK that developers share; this model was empir-

ically obtained in [19] (see Fig. 3). The aim of relating user tags and

meta-tags is to provide an abstract means to store and find AK, signifying

that when developers wish to recover AK and they do not remember the

exact name of a tag, they can use a meta-tag to conduct an initial search.

Once the development cycle has started, remote and local developers

could interact using UTEM, tagging messages that contain important AK.

We are aware that developers sometimes make typing errors, or forget

the exact way in which each tag was registered, or even the existence of

certain tags, and have, therefore, developed a tagging helper component

(see Fig. 2 , part B) that auto-completes tags while developers are typing

in conversations, whose source was the tag repository (depicted as a

72

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

Tags database in Fig. 2), which was updated using Tags Administrator.

We thus aim to reduce the number of typing errors, ensure that users

are using the exact tag writing and reduce tagging problems [43] .

3.2.3. Architectural knowledge searching mechanism

We developed a web-based searcher, called AK searcher (see Fig. 2 ,

part C), which has three search parameters: (1) free text, in which users

can input any text to be searched for in the message content, along with

the names of the author and recipient of the message; (2) Date range,

from which users can select the period when the knowledge was shared;

and (3) Tag filter, from which users can select the tags from a tag tree, on

which meta-tags and user tags are hierarchically organized. This enables

users to remember which tags are available and then add any number

of them to the tag filter.

Having executed a search, a list of the coincident messages is shown,

along with four panels (see Fig. 2 , part C), which show all the related au-

thors, recipients, sources (UTEM from which the messages originated)

and tags of the resulting messages. Developers could apply extra fil-

ters to narrow the results, by clicking onto the panels’ elements. The

tag panel also shows each tag’s parents; for example, if there is a tag

called #nodeMongoDB, which is related to the #Code meta-tag, the tag

panel shows both. We are aware that obtaining AK from a single tagged

message could be difficult. AK searcher includes a feature to obtain the

interaction context of a selected message, in which developers can read

messages that were sent five minutes before and five minutes after a

certain message (see Fig. 2 , part C); they can even load messages from

an additional five minutes before or after, if necessary.

3.3. Architectural knowledge condensation in agile and global software

development

Instantiating the AK Condensation concept would give agile/global

developers a lightweight means to structure AK (with a low cognitive

load) while they are interacting with UTEM (maintaining agility), and

an easier means to retrieve dispersed AK from UTEM logs. Our pro-

posal could consequently reduce AK vaporization in AGSD environ-

ments. However, before implementing AK Condensation in a real sce-

nario, we must first determine its concept feasibility in a controlled en-

vironment. We determined this concept feasibility by observing two key

phases: AK structuring and AK retrieval. The following research ques-

tions arose from the latter:

RQ1. Is an assisted semi-fixed tagging mechanism suitable to struc-

ture AK and avoid tagging explosion during UTEM interactions

in AGSD environments?

RQ2. Is it better to search for AK using the ArchiKCo searcher than

by directly using the AK sources (UTEM) in AGSD environments?

RQ2.1. Is ArchiKCo searcher trustworthy as regards finding correct

AK?

RQ2.2. Do developers find the correct knowledge faster using the

ArchiKCo searcher than directly using the AK sources (UTEM)?

RQ2.3. Is the ArchiKCo searcher preferable when searching for AK

rather than directly searching in the UTEM source in AGSD envi-

ronments?

The method employed to determine the feasibility of the AK Con-

densation concept using the ArchiKCo prototype is presented below.

4. Method to evaluate architectural knowledge condensation

feasibility

4.1. Scoping

As stated above, AK structuring and AK retrieval are the key phases of

the AK Condensation concept. We, therefore, designed a two-part eval-

uation to determine the feasibility of the concept presented. We define

these parts below.

In [59] , we observed that social tagging could be a lightweight man-

ner to structure AK, using a semi-fixed and assisted tagging mechanism.

In that study, we added a tagging helper to a web-based messenger,

developed ex-professo, thus giving us full control over the tagging en-

vironment, allowing us to ensure that participants only used registered

tags. The ArchiKCo tagging helper has now been added to Skype, signi-

fying that we do not have sufficient control to avoid unregistered tags.

In order to answer RQ1, the first part of evaluating AK Condensation

comprised an observation study focused on tagging behavior in terms

of registered (valid) tags and obtaining participants’ perceived usability

of the tagging mechanism.

We believe AK Condensation could enhance AK searching in UTEM

logs during AK retrieval. We, therefore, designed the second part as a

quasi-experiment to compare participants’ searching performance when

using ArchiKCo and two UTEM: Skype and Trello (RQ2). This section

presents the method employed to determine the feasibility of AK Con-

densation, which was structured following Wohlin et al. [60] specifica-

tion.

The objective of the whole study is to Analyze the use of the imple-

mentation of the concept of AK Condensation, for the purpose of deter-

mining its feasibility with respect to tagging behavior and AK retrieval,

from the point of view of professional developers and students, in the con-

text of AGSD.

4.2. Planning

4.2.1. Context selection

We had two experimental contexts: industrial AGSD and academia

(replica). The participants in the industrial context were professional de-

velopers from seven Mexican companies: four small 5 (< 100 employees)

and three medium

5 (100–999 employees). The participant companies

develop software for diverse areas (transportation, health care, internet

of things, administration in general, etc.), have worked in a distributed

or global environment, and all work in an agile manner. The main ob-

jective of working in an industrial context was to attain richer qualita-

tive feedback about the AK Condensation concept. The academia replica

took place at Castilla-La Mancha University in Spain (Spanish acronym,

UCLM) with undergraduate and graduate students from the Superior

School of Computer Science, all of whom had knowledge of AGSD.

4.2.2. Selection of subjects

The subjects of both contexts were chosen for convenience. The

academia subjects were 3rd year undergraduate students, who had al-

ready studied subjects regarding agile methods, programming and soft-

ware design. There were also graduates researching topics related to

software development, who consequently also know about agile meth-

ods and software design. The industry subjects were professionals who

have worked on AGSD projects.

4.2.3. Study design

This study had a within-subject design, since all the treatments were

applied to all the participants. It consisted of two parts: AK structur-

ing and AK retrieval. The first part was an observational study during

which all the participants were mentally situated in a context scenario

to interact in pairs using Skype and the ArchiKCo tagging helper (with

predefined user tags) and following a chatting script containing seven

marks suggesting what to tag. Since the participants did not register the

user tags in the catalog, they were free to assign unregistered tags if they

did not find one that fitted a certain message.

In the AK retrieval part, the participants had to answer a 12-question

survey concerning the context scenario in an attempt to emulate AK

needs. The survey answers were stored in the Skype log generated in

the previous part, and on a Trello board that contains user stories and

5 https://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses/ .

73

https://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses/

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

comments related to the same context scenario. We chose Trello as a

second UTEM because it is easy to use and commonly used by the par-

ticipants. Eight survey questions indicated which media to use to search

for the answer: Skype, Trello or AK Searcher, which contains the logs of

both UTEM. The participants were free to choose the media they pre-

ferred to search for answers to the last four questions, which were de-

signed so that the answers to questions 9 and 10 could be found using

Skype or AK Searcher, and the answers to questions 11 and 12 could

be found using Trello or AK Searcher. We consider that this part was

a crossover quasi-experiment with one factor and three treatments, in

which only two comparisons are relevant: AK Searcher/Skype and AK

Searcher/Trello.

4.2.4. Variables selection

In the AK retrieval part, the independent variable was represented

by the different media used to search for AK. There is no independent

variable for the AK structuring part, since it is an observational study.

The dependent variables were: tag validity, i.e., number of registered

and unregistered tag instances used by participants during the chatting

session; media preference, i.e. , percentage of time a participant used a

certain media to search for AK; correctness of answers, percentage of

correct AK found per media; and time required to find correct knowl-

edge.

4.2.5. Hypotheses formulation

In this part, we present the four study hypotheses, which are directly

related to the dependent variables defined above.

• H 0TagsValidity : There is no difference between the number of valid

and invalid tag instances used during the UTEM interaction.

• H 0Preference : There is no difference as regards to the preference

to search for knowledge using any of the media provided.

• H 0Correcteness : There is no difference in the percentage of correct

answers found using any of the media provided.

• H 0Time : There is no difference in the time required to find correct

answers using any of the media provided.

4.2.6. Instrumentation

Below, we present the instruments developed in order to conduct

this study as it was designed.

• Context scenario . This scenario concerned two agile develop-
ers from different companies and locations working on the same

project (medical appointments system), one of whom required in-

formation about a RESTful service that the other was developing.

They had documentation debt, and consequently had to acquire

the project AK by asking each other questions.

• Chatting scripts . Each pair of participants had to follow 2 scripts

(one per scenario role) to simulate a technical conversation tak-

ing place using Skype regarding the context scenario.

• SUS questionnaire . We prepared a questionnaire based on the
System Usability Scale [61] (SUS)using a Likert-7 scale and fo-

cused on the Tagging Helper. We added two SUS-style questions

(one positive and the other negative) to explore the participants’

perceptions of the helper’s unobtrusiveness. This questionnaire

also included an open-ended question to request suggestions re-

garding the Tagging Helper.

• Extended TAM questionnaire . We prepared a questionnaire

based on the Technology Acceptance Model [62] (TAM) using

a Likert-7 scale and focused on the AK Searcher. We added ques-

tions concerning reductions in interruptions (one question), find-

ing relevant AK easily and in a timely manner (three questions)

and the participants’ overall impression of the whole ArchiKCo

prototype (two questions).

• 12-questions survey . This survey was uploaded onto LimeSur-
vey. 6 To compare the participants´ performance using AK

Searcher versus Skype and Trello, we created two survey versions

(one for each pair member), in which we varied the indicated

media per question. For instance, while one pair member was re-

quired to answer a question using Trello, the other pair member

was required to answer the same question using AK Searcher; and

the same between Skype and AK Searcher.

4.3. Operation

4.3.1. Preparation

We deployed an ArchiKCo instance for each pair of participants and

registered 10 user tags linked to different meta-tags related to the con-

text scenario. The user tags were: IPService, TestsREST (related to Tech-

nologicalSupport meta-tag); RestApikey, RestSecurity, Encryption, Test-

Data, RESTResource, RESTResponse (related to Code meta-tag); Angu-

larEncryption (related to Component meta-tag); and UserStory (related

to Documentation). We pre-defined tags because each participant pair

could define a different set of tags, which hindered the tagging behav-

ior analysis. We additionally carried out a pilot test, which showed that

the pre-defined tags really accorded with the context scenario. We also

added five cards to a Trello public board on which fictitious members

of the development team provided user story clarifications. Finally, we

activated the two versions of the 12-question survey.

4.3.2. Execution

We first carried out the study in the industrial context with 30 pro-

fessionals (average age = 28, SD = 3.9), 10 from the medium-sized com-

panies, and the rest from the small ones. The industry participants had

experience in ASD (average of 3.1 years’ experience, SD = 1.9) and in

GSD (average of 2 years’ experience, SD = 1.4). The study in UCLM was

carried out three months after the industry study, with 30 students (av-

erage age = 24.1, SD = 3.5): four graduates and 26 undergraduates. The

experiment took place in three sessions per week for both contexts, so

not all participant began on the same day. These sessions are explained

below.

• Installation session (duration ≈ 10 min). The participants were
given an overall explanation of the study sessions along with

their objectives. We organized the participants into pairs and then

helped them configure the tagging helper (to work with Skype)

and the Skype extractor (to send each pair’s conversations to a

shared server).

• Solving scenario session (duration ≈ 25 min). We gave the par-
ticipants a short training session regarding how to use the tagging

helper (three minutes, approx.), and they quickly explored the

available tags (two minutes, approx.). We then described the sce-

nario in which they would be located to carry out the tasks, and

assigned a role to each pair member: either the developer work-

ing on the RESTful service or the developer who wished to use

it. Each member of each pair sat in a different part of the session

room, ensuring they had no visual contact, as if they were geo-

graphically distributed. We asked them to avoid talking to each

other to better emulate an environment of geographic distribu-

tion. They then used Skype to chat, following the corresponding

script, and tagging aided by the Tagging helper. We also told

them that they could tag any message as they considered neces-

sary, and that they could write a new tag (unregistered/invalid

tag) if they could not find one that fitted a certain message on

the options shown by Tagging helper. After the participants had

finished following the chat script, they answered the SUS-based

questionnaire.

6 https://www.limesurvey.org/ .

74

https://www.limesurvey.org/

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

• Searching session (duration ≈ 20 min) . This session took place

two days after the chatting session to prevent the participants

from being able to remember the chat topics, thus mitigating the

learning effect. The participants were required to answer the 12-

question survey easily. The version of the electronic survey was

assigned to each pair member randomly. The participants were

trained to search in the three different media, after which we

explained that each question indicated where to search for the

answer, along with the fact that they could answer “I don’t know ”

if they were unable to find any information. They then responded

to the corresponding electronic survey and finally to the extended

TAM questionnaire.

4.3.3. Data collection

The tags’ validity was determined by obtaining all the tagged mes-

sages and comparing them with the tags catalog (user tags and meta-

tags) to obtain the number of valid and invalid tags per participant. Re-

garding media preference, each 12-question survey had a field for the

last four questions in which the participants indicated the media used

to obtain the answer. We, therefore, counted only the number of an-

swers for each media. Correctness of answers was obtaining by manually

checking each one. The time required to find the correct knowledge was

measured using LimeSurvey, which registers the time that has elapsed

between the presentation of a question and that at which the participant

clicks onto the next button to pass to the next question. Finally, we ob-

tained the qualitative perception about Tagging Helper and AK Searcher

using the results of the SUS and TAM questionnaires, respectively.

4.3.4. Data validation

The AK retrieval part of the industry context was conducted in the

respective participant companies. We could not avoid interruptions dur-

ing the session and the time required to find the correct knowledge was

consequently affected. We, therefore, take into account only the time

data from the academic context.

5. Results

The results obtained are presented in three parts: (1) the results of the

AK retrieval part including the Tagging helper usability perception; (2)

those of the AK retrieval part including the participants’ perceptions of

AK Searcher; and (3) the participants’ overall perceptions of ArchiKCo.

5.1. AK structuring part

In this section, we analyze how the participants tagged messages us-

ing the tagging helper and its usability perception. During the tag anal-

ysis, we also identified tag instances that were used correctly in terms

of their semantics. The results are consequently presented in terms of

tag validity, tag correctness and Tagging Helper usability and unobtru-

siveness.

5.1.1. Tags validity

Fig. 4 shows that most of the professionals (80% approx.) used be-

tween six and nine tag instances during the chatting session, while the

UCLM students (80% approx.) used between three and eight tag in-

stances. A considerable percentage of the participants (50% approx.),

therefore, used valid tags as required, or more, i.e., at least seven tagged

messages. Moreover, some participants used 12 or more valid tag in-

stances (13% approx.), i.e., at least five instances more than expected.

We can, therefore, interpret that they had the initiative to tag messages

when this was not suggested in the script.

Upon considering invalid tag instances, 23% of the professionals did

not use invalid tags, while only 6% of UCLM students did not do so (see

Fig. 4). Furthermore, around 73% of the professionals used between one

and three invalid tag instances, while 83% of the UCLM students used

between one and six invalid tag instances. Invalid tags also represent

new tags, and in this respect, 53% of the UCLM students used between

one and three instances of new tags, while only 23% of the profession-

als used one new tag instance (see Fig. 4). However, 33% of the UCLM

students used between four and eight new tag instances, indicating their

disposition to tag messages or their inexperience with the script topics,

signifying that they had to create new tags that would fit their knowl-

edge. Fig. 4 also shows that around 50% of all the participants made no

typing errors in the tag instances, and that 46% of the participants had

only one or two “typos ”. This could mean that the Tagging Helper really

helped them obtain a low error rate.

5.1.2. Tagging correctness

Around 13% of all the participants had no semantic errors when

using tag instances, and 40% used only one or two tag instances er-

roneously (see Fig. 4). This is significant, because the participants did

not know the exact semantics of the tags beforehand. However, 50%

of the professionals had between three and five instances of incorrect

use, while only 23% of the UCLM students did so in the same range. Re-

garding the correctly used tag instances, 78% of all the participants had

between two and six correct instances, and the professionals registered

more variability than the UCLM students (see Fig. 4). Finally, around

13% of the participants registered between eight and ten correctly used

instances, again highlighting that they did not know the tags in advance.

5.1.3. Overall tagging behavior

To summarize the tagging behavior (see Fig. 5), the participants used

more valid tag instances (75%) than invalid ones (25%), and more tag

instances were used correctly (47%) than incorrectly (28%). Both differ-

ences were confirmed statistically using the Wilcoxon Signed-Rank Test

(𝛼 = 0.05): valid vs. invalid instances – p -value = 0; correct vs. incorrect

instances – p -value = 0.000008. Moreover, there were 18% of new tag

instances and only 7% of typing errors, which was also statistically sig-

nificant using the same test (p -value = 0.0056). This signifies that the

invalid instances resulted more from the need for new tags than from

errors caused by the tagging mechanism.

We also noticed that 38% of the correct tag instances were unex-

pected (see Fig. 5), i.e., tag instances that fitted the message’s semantics

but that the participants were not expected to use, or that instances were

even used in messages in which we did not suggest tagging. Unexpected

tags comprise 26% of user tags and 12% of meta-tags. These meta-tags

were: Technological Support, Component, Software, Code, and Neces-

sity. These meta-tags would, therefore, appear to be intuitive, since we

did not explain their meaning.

5.1.4. Tagging helper usability and unobtrusiveness

We obtained the scores from all the SUS questionnaires and trans-

formed them according to the curved grading scale [63] , including the

two questions regarding unobtrusiveness. Tagging helper obtained an

averaged SUS score of 77 (SD = 13, med. = 78 = B +), correspond-

ing to a B grade, and represents a good usability perception [64] . Both

sets of participants had similar usability perceptions. However, around

20% of the professionals had lower usability perceptions (grades D and

F). This was mainly owing to the mechanism employed to select a tag

and navigate through the suggestion list; it was necessary to press the

< Alt > + arrows to navigate, and the < Alt > + < Enter > to select a tag.

Moreover, both sets of participants had similar unobtrusiveness percep-

tions; we obtained an average unobtrusiveness score of 72 (SD = 20,

med. = 83 = A), which corresponds to a C + grade. In this case, 30% of

the UCLM students and 17% of the professionals considered that Tag-

ging Helper would be obtrusive in their daily work. Upon analyzing the

participants’ comments, we concluded that this was caused by the navi-

gation and selection mechanism and also by the low availability of tags,

since the participants did not create/register the tags.

In summary, we observed a significant rate of valid tag instances

used correctly during the chat session, with a low rate of typing er-

rors. This behavior could lead to a reduction in tag explosion and its

75

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

Fig. 4. Tagging behavior expressed by tag instances per participant.A = Mexican developers and UCLM students, B = Mexican developers only, C = UCLM students

only. Outliers correspond to identified participants (< 2) who used many valid/invalid tag instances, or many new tags instances, or many correct/incorrect tag

instances.

Fig. 5. A = Distribution of all tag instances (valid and invalid), detailing valid tags. B = Distribution of all tag instances (valid and invalid), detailing invalid tags.
C = Distribution of correct tag instances (expected and unexpected), detailing unexpected.

related problems. Moreover, Tagging Helper has a great chance of being

adopted to structure AK, since it is perceived as usable and unobtrusive.

5.2. AK retrieval

5.2.1. Media preference results

The participants preferred AK Searcher to Skype and Trello when

answering all the questions (see Fig. 6 , part A). There were ques-

tions to which the participants could not find the answers and did

not, therefore, register a preferred media. Focusing only on the an-

swered questions, and considering both participant profiles (profes-

sionals and students), AK Searcher and Skype obtained preferences of

69% and 31%, respectively, by joining the preferences attained for

questions 9 and 10. AK Searcher and Trello similarly obtained pref-

erences of 71% and 29%, respectively, when joining the preferences

attained for questions 11 and 12. Since using the data obtained for

each question was insufficient for the use of a paired test such as

the Wilcoxon Signed-Rank Test, we applied goodness of fit tests based

76

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

Fig. 6. A = Media preference of the participants as regards questions in which they had free choice. B = Comparison between correctness of answeres obtained using
AK Searcher and Skype. C = Answering average times per question type. Vertical lines in B and C represent standard deviation.

on X 2 (𝛼 = 0.05), supposing a uniform distribution for media prefer-

ence. There is sufficient evidence to state that the participants’ pref-

erences are not uniformly distributed (AK Searcher/Skype questions:

X 2 = 16.69, p -value < 0.001; AK Searcher/Trello questions: X 2 = 18.925,

p -value < 0.001) and that there is, therefore, a tendency to prefer

AK Searcher in all cases. We can, therefore, reject the null hypothe-

sis H 0Preference since there was a significant difference in the preferred

media.

5.2.2. Correctness of the results

Fig. 6 (part B) shows there were cases in which participants using

AK Searcher obtained a higher correctness of answers than when using

Skype, while there were others in which they obtained a lower correct-

ness of answers than when using Skype, and yet others in which the

correctness of the answers was the same for both media. Furthermore,

both sets of participants behaved in a similar way when using either

AK Searcher or Trello (see Fig. 6 , part B). However, in this case, AK

Searcher appears to have obtained a higher correctness of answers in

more cases. We grouped the correctness data regarding questions 1–4,

9 and 10 (AK Searcher vs Skype), and questions 5–8, 11 and 12 (AK

Searcher vs. Trello) of both participants’ profiles to obtain two paired

sets of data (AK Searcher vs. Skype and AK Searcher vs. Trello), each of

which contained 12 elements, i.e., the results obtained for six of the stu-

dents’ questions and six of the professionals’ questions. We then applied

the Wilcoxon Signed-Rank Test (𝛼 = 0.05) to both sets, and obtained

that there is no difference among the correctness of answers when using

AK Searcher or Trello (W = 15 > W

𝛼= 0.05 = 3), or using AK Searcher or

Skype (W = 30 > W

𝛼= 0.05 = 10). It is not, therefore, possible to reject

the null hypothesis H 0Correcteness .

5.2.3. Time to find correct answers

Fig. 6 (part C) shows the time required to obtain answers with AK

Searcher was higher than that required when using Skype for most of

the questions in which the media required to search for the answer

was indicated (questions 1–8). However, when the participants were

free to choose any media (questions 9–12), less time was required to

77

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

obtain answers with AK Searcher than with Skype and Trello. We

grouped the data by media and type of questions (free media choice

or indicated media) such that we obtained four groups: (1) indicated

media – Skype vs. AK Searcher, (2) indicated media – Trello vs. AK

Searcher, (3) free media choice – Skype vs. AK Searcher, and (4) free

media choice – Trello vs. AK Searcher. We determined whether there

was a statistical difference within these groups by applying a Mann–

Whitney U Test (𝛼 = 0.05), because the samples are not paired, since

we consider only the time required to find the correct answers. In the

case of questions with an indicated media, there is a large difference in

the answering time (p -value = 0.009) between AK Searcher and Skype,

indicating that the participants found the correct answers faster when

using Skype. In the same case, there is no considerable difference be-

tween AK Searcher and Trello (p -value = 0.153), although the partic-

ipants were, on average, faster when using AK Searcher. In the case

of questions with a free media choice, there is a large difference in the

answering time (p -value = 0.045) between AK Searcher and Trello, indi-

cating that the participants found the correct answers faster when using

AK Searcher. However, there is no considerable difference between AK

Searcher and Skype (p -value = 0.254), although the participants were,

on average, faster when using AK Searcher. We can, therefore, reject

the null hypothesis H 0Time , since there were cases in which the partic-

ipants were faster when using AK Searcher and others in which they

were faster when using Skype.

5.2.4. Extended TAM results

The results of the extended TAM questionnaire showed that AK

Searcher is extremely useful (median = mode = 6) and easy to use (me-

dian = mode = 6). The participants perceived that AK Searcher could

help them find important AK in a timely manner (median = mode = 6).

They also perceived that interruptions could be reduced using AK

Searcher (median = mode = 6), since they would have a source of

AK other than that of their teammates. It was also perceived that AK

Searcher could ease the discovery of AK during development cycles (me-

dian = mode = 6).

5.2.5. AK retrieval results summary

AK Searcher was greatly preferred by the participants when search-

ing for AK, which is supported by the perceptions presented above.

Our results also provide evidence that professionals may perform bet-

ter when locating knowledge if they use AK Searcher rather than Trello

or Skype when they do not know the knowledge source. Finally, AK

Searcher could be trustworthy when searching for knowledge, since the

participants obtained a high percentage of correct answers and there

was no significant difference between this percentage and that obtained

with Skype or Trello.

5.2.6. Lessons learned by using Archikco prototype

We included a question in the TAM questionnaire to obtain a rating

for the ArchiKCo prototype: a median of 8 (mode = 8) on a scale of 10.

We were additionally able to learn some lessons from this study, which

we grouped into AK structuring, AK retrieval and AK Condensation.

5.2.7. AK structuring

The participants stated that they have to get used to tagging their

conversations. However, we believe that getting used to tagging could

be easy because people are currently used to tagging in social networks.

Furthermore, the participants suggested some enhancements to Tagging

Helper: an automatic tagging or smart tag suggestion depending on the

conversation topics, adding tags during the conversation, and selecting

tags from a trending topic list. Finally, some participants struggled with

the mechanism employed to browse tags in Tagging Helper, which was

affected by Skype´s keyboard functions. This mechanism could, there-

fore, vary regarding the UTEM selected.

5.2.8. AK retrieval

Some participants commented that tags were not relevant during AK

retrieval; one participant stated, “I would end up not using labels, since I

would look for words, not for labels ”. In fact, while the participants were

using AK Searcher, we observed that most of them preferred to search

using free text, but some of them used tags to refine the results.

Regarding detail browsing interactions, this should change depend-

ing on the type of media: synchronous or asynchronous media; for

instance, in asynchronous media, the time that elapses between mes-

sages could be more than five minutes, which is the time window that

searchers have configured by default. We discuss this topic at greater

length in the discussion section.

We also noticed that there should be a means to exclude informal

messages from the repository. In this respect, one participant said AK

Searcher “could cause a lot of distraction because really important conver-

sations are mixed with personal conversations, jokes, etc. ”; this situation

could be problematic for AK retrieval.

5.2.9. AK condensation

Most of the participants commented that AK Condensation could

speed up AK retrieval, reduce interruptions and reduce the repetition of

information among teammates. The participants also appreciated that

AK Searcher could be a single point of reference, rather than searching

in multiple sources multiple times. In this respect, one participant stated:

“…notes and requirements are not discussed in the same place… there are

conflicts because not all the parties have access to this information all the

time. ”

6. Threats to validity

In order to understand to what extent the results are valid and how

they can be used, a discussion regarding the validity threats is presented

below according to Wohlin et al. [60] specification.

6.1. Conclusion validity

This study comprised participants from different backgrounds, but

all of them were familiar with Skype and Trello. However, in order

to balance the participants’ knowledge, they received a brief amount

of training regarding how to search for information in these media.

We are aware that the participants could have been biased toward AK

Searcher, because it was introduced as a new tool, or because they might

have wanted to please us; however, their participation was anonymous.

Moreover, we did not have previous contact with them before or after

the evaluation and there was, therefore, no reason to try to please us.

Moreover, the researchers were not close to the participants during the

tasks in which they were free to choose one of the three available me-

dia. Furthermore, we are aware that the evaluation period was, perhaps,

short. However, the results indicate an initial trend. It is also significant

that, despite the short time and the use of a new tool, (people do not

generally like to change their way of working) the subjects preferred

AK Searcher when they did not know the location of a certain piece of

knowledge.

6.2. Internal validity

All the participants were volunteers and showed a great interest in

collaborating in this study. In addition, the study sessions were short to

prevent them from getting bored or tired. We attempted to avoid learn-

ing effects by using a counterbalancing technique, i.e., we placed the

participants in groups and presented the conditions (indicated media to

search) to each group in a different order (see Section 4.3.2). Regard-

ing persistence effects, the study was run with subjects who had never

taken part in a similar study. Moreover, the participants did not have

any previous knowledge of the context scenario, since it was fictitious.

Furthermore, we conducted the searching session two days after the

78

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

chatting session to avoid the situation of the participants remembering

all the details about the script topics. In order to clearly observe the re-

sults of the treatments on the participants’ performances, they received

the same set of questions to be searched for in the three media. All the

questions could be answered using the indicated media, thus reducing

the risk of the participants not being able to find the correct answer.

The Wilcoxon Signed-Rank Test confirmed that there was no significant

difference in the correct answers according to the media used, and the

results are consequently independent of the study package.

6.3. Construct validity

We measured the time required to answer a question using a Limesur-

vey feature, which registers the time between a question being shown

and the participant clicking onto the button to show the next one. This

time could have been affected by the participants’ reading speed and

by the time needed to understand the question. We considered that the

participants had similar abilities and this threat could, therefore, have

been reduced by the arrangement of the sets. In order to discover the

perceptions of Tagging Helper as regards unobtrusiveness, we extended

the standard SUS questionnaire by adding two questions (one positive

and the other negative), which were also processed by following the

steps required to obtain the SUS score. This extension provided us with

a structured means to obtain the participants’ perceptions of topics that

the conventional SUS questionnaire does not include.

6.4. External validity

We identified two main threats to external validity: subjects and

tasks/materials. Regarding subjects, we also included students in order

to have more controlled conditions in an academic context. Unfortu-

nately, these students had no experience of real AGSD projects, but they

had taken courses concerning ASD and GSD during their university ed-

ucation. We included professional developers with experience in AGSD

to enforce external validity. Concerning tasks/materials, the chatting

scripts were based on a fictitious scenario, but with real world charac-

teristics. Although, tagging was suggested in the scripts, the participants

also tagged messages using their own initiative. Moreover, the need for

AK was motivated by a questionnaire, not by a project necessity. Real

scenarios should, therefore, be considered, as they are supposedly more

complex and articulated.

7. Discussion

In this paper, we propose the concept of AK Condensation and

present its implementation (ArchiKCo), which was evaluated to deter-

mine the feasibility of this concept. These evaluation results are dis-

cussed in three parts: (1) AK classification mechanism, (2) AK searching

mechanism, and (3) Feasibility of AK Condensation.

7.1. AK classification mechanism

Literature reports that developers prefer using free tags in tagging

systems, given their low cognitive load in everyday work [44,45] .

We based our AK classification mechanism on an assisted tagging

mechanism (Tagging Helper), as IBM® Rational® Jazz® [44] , TagSEA

[45] and eMoose [65] do. However, we included predefined user tags,

which are in turn associated with a fixed set of meta-tags, rather than

just allowing free tagging. Our results do not reflect that the participants

disliked using predefined tags, and they merely stated that it would have

been better if they could have defined the tags that they used during the

evaluation. However, we should explore the participants’ perceptions in

more long-term studies. The participants also stated that it might be ap-

propriate to include a mechanism by which to add tags on the fly or a

smarter tag suggestion (based on the context of the topics), but none of

them mentioned free tagging.

The participants did not show any sign of disliking tag conversation

messages and around 50% of them used the expected number of tag in-

stances (seven instances). In a previous study [59] , around 90% of the

participants used at least the number of tag instances provided, although

in that case, only three suggestions were marked in the scripts, which

were also shorter. Both results show evidence that developers may need

to tag messages during conversations, thus indicating that an AK classi-

fication mechanism based on social tagging could be successful.

We decided to use an assisted tagging mechanism to avoid problems

such as tag explosion, which could ruin the AK classification mecha-

nism. Our results do not show any signs of tag explosion. Despite the

fact that we allowed the participants to use new tags if they consid-

ered it necessary, there were only 18% of instances of unregistered tags.

This tagging mechanism could also help reduce the problem of obscure

similarity [43] , since the participants selected a tag from a suggestion

list and messages were, therefore, tagged with correctly written tag in-

stances. In that respect, there were only 7% of tag typing errors during

the chatting sessions. This low error rate also contributed to keeping the

AK classification mechanism functional.

Although the participants did not know the registered tags before-

hand, significantly more tag instances were correctly (47%) rather than

incorrectly used. This means the tags’ semantics corresponded to the

message topics. However, this tagging accuracy is lower than that ob-

tained by Sohan et al. [46] , who used an intelligent auto-tagging mech-

anism (70% accuracy). We believe that the accuracy of Tagging Helper

could be increased in future evaluations if the participants define their

own tags.

In our previous study [59] , 30% of the participants used meta-tags

correctly, while in the present study this percentage increased to 43%.

This could, therefore, be considered as evidence that the conceptual

model entities on which meta-tags are based are expressive and are

related to AGSD-type situations in terms of AK. However, we should

conduct studies focused only on the refinement of the model.

These results lead us to believe that Tagging Helper could be part

of a good AK classification mechanism for use during UTEM conversa-

tions. Although the participants perceived Tagging Helper to be usable

(SUS score 77 = B grade), this perception was lower than that attained in

our previous study [59] (SUS score 87 = A + grade = Excellent according

to Bangor et al. [64]), in which we evaluated another implementation

of Tagging Helper that was integrated into a custom Web instant mes-

senger. In that study, we had absolute control over the autocomplete

features and the participants, therefore, reported fewer problems with

tag selection and navigation. However, the implementation employed in

this study was integrated into Skype, signifying that we had to adapt the

selection and navigation features so as not to interfere with the Skype

features. Despite this difference in usability, the Skype-based Tagging

Helper was perceived as unobtrusive (score 72 = C + grade), but we

believe that this perception could be improved if tag navigation and se-

lection are also improved. Nevertheless, some participants stated that it

was just a matter of getting used to the helper’s features.

7.2. AK searching mechanism

Our results indicated that AK Searcher is a trustworthy application

that is preferred by developers when searching for AK, because users

tend to find AK faster than in UTEM when they do not know the knowl-

edge source. However, AK Searcher was slower than Skype when we in-

dicated a media in which to search. This could have been caused by the

user interface design. While searching in Skype consists of at least three

steps: (1) Ctrl + F to show the search textbox, (2) write text to search, (3)

press < Enter > , AK Searcher requires two more steps to show a specific

result: (1) write text to search, (2) press < Enter > , (3) look for an in-

teresting result item, (4) open corresponding conversation, (5) look for

knowledge in conversation. In a real situation, therefore, if a developer

remembers the source of a certain item of knowledge, it might be bet-

ter to search directly in that source. However, if a developer does not

79

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

remember the AK source and needs more than free text searching to

find a specific item of knowledge, AK Searcher would be the best op-

tion, since it offers more parameters in which to carry out a search and

refine the result set.

During the searching session, we observed that participants barely

used the proposed classification mechanism to find knowledge, although

they commented that tagging conversations is an interesting way to

search for knowledge later. We believe that tags are more useful to

search for AK if a developer wishes to attain knowledge from a general

view to a detailed view. For example, when a new team member needs

to acquire AK of the team’s project, a good starting point might be to

explore the existing tags and then explore the comments of a particular

tag in greater depth.

The participants’ comments and our observations led us to realize

that improvements should be made to AK Searcher, one of which is to

present the results differently depending on whether the AK source is a

synchronous or an asynchronous UTEM. In our study, Trello could be

considered as asynchronous, since card comments are not received as

frequently as Skype messages in a conversation. The AK Searcher feature

used to show a range of messages 5 min before and after a selected

message may, therefore, be useless, since Trello comments could have

a greater time difference. The same problem would occur with other

asynchronous media (e.g. email). Another improvement would be to

include a feature to show only tagged messages in the first result set.

The problem of showing irrelevant messages (e.g. personal interactions,

jokes, etc.) could, therefore, be reduced because these kinds of messages

would not be tagged. Another way to reduce this problem would be

to add exclusion tags that tell the Gatherer Service not to send certain

messages to the repository.

To the best of our knowledge, there is no similar AKM research tool

to ArchiKCo. The important differences between the reported tools (see

Section 2.2) and our approach are: (1) they are not focused on searching

for AK sourced in electronic interactions; (2) almost all of them are based

solely on free text searching, and only TagSEA [45] and IBM®Rational®

Jazz® [44] include extra parameters(e.g. tags or waypoints); (3) they do

not have features to refine a result set; (4) they do not integrate AK from

different sources (IBM® Rational® Jazz® could be configured to do so,

but the paper [44] that refers to this does not present any integration),

and (5) they do not present empirical results regarding searching in their

respective papers. All these differences prevent us from making a direct

comparison with our results.

Despite the improvement opportunities, AK Searcher was perceived

to be a usable and useful media that eases the discovery of AK during an

AGSD cycle, which could reduce interruptions among teammates when

they have questions about the project architecture. Moreover, the par-

ticipants perceived that AK Searcher would allow them to find AK in a

timely manner, as required in an agile environment.

7.3. Feasibility of AK condensation

Agile/global developers know that UTEM logs contain important AK

and they, therefore, need to search for architectural topics in those logs.

However, they often spend too much time searching for AK because it

is dispersed throughout different UTEM. The results obtained provide

sufficient evidence to state that it could be feasible to implement the AK

Condensation concept in AGSD for the following reasons.

• UTEM logs lack a structure that eases AK searching. We have, there-

fore, proposed a classification mechanism based on assisted social

tagging. The participants used this mechanism well and it was per-

ceived to be useful and unobtrusive. The results showed that ag-

ile/global developers could tag UTEM interactions accurately, even

if they do not know the tags’ meaning beforehand. In a real situa-

tion, developers should be careful to define useful tags, and to tag

in a correct manner, since they are the most interested in retrieving

AK from UTEM logs, because documentation debt is often present

in AGSD environments. Furthermore, when developers tag during

UTEM interactions, they are able to tag coherently because they are

aware of the interaction topic. The evaluation results, therefore, al-

low us to state that (RQ1) social tagging is suitable and feasible to

classify AK in AGSD because: (1) it is usable and unobtrusive, (2)

agile/global developers could classify AK correctly, and (3) it is in-

tegrated into the agile work style.

• The AK retrieval mechanism was well received by the participants,

since it integrates different AK sources, and they thus preferred

searching for AK using this mechanism than searching directly in

each UTEM. What is more, the participants tended to discover AK

faster than when doing so directly in UTEM, particularly when they

did not know which UTEM contained the AK required. The partici-

pants perceived that the AK retrieval mechanism was useful and us-

able. Furthermore, since AK is previously structured by the classifica-

tion mechanism, AK retrieval could be easier and quicker than code

analysis, even if the developers do not know the terms required to

search for AK, because tags are linked to meta-tags that have a fixed

meaning. Meta-tags could, therefore, be a guide to find AK, since

they would not lose meaning overtime. However, we must conduct

a long-term evaluation to better assert this. The evaluation results,

therefore, show that the AK retrieval mechanism is (RQ2) suitable

and feasible to help agile/global developers obtain AK from UTEM

logs, because the mechanism is (1) useful and usable, and (2) the

AK retrieval performance was better using the proposed mechanism

when developers ignored which UTEM log contained the required

knowledge.

Implementing the AK Condensation concept could help reduce AK

vaporization in AGSD environments, taking into account the global

and distribution aspects, without affecting the teams’ agility. Further-

more, by reducing AK vaporization in AGSD, problems related to wasted

time, software defects, and software projects’ technical understanding

[53,54] could be also reduced. It is worth recalling that we are pre-

senting a single means to implement the concept of AK Condensation.

Different implementations could be created solely by considering the

basic items of this concept. It might be interesting to evaluate another

implementation to confirm the feasibility of AK Condensation.

8. Conclusions and future work

In this paper, we present the concept of AK Condensation, which

consists of structuring and retrieving AK shared by means of UTEM to

reduce its vaporization in an AGSD environment. We also present an

implementation of this concept, which was evaluated to determine AK

Condensation feasibility. The evaluation results allowed us to determine

that this concept could be feasible in AGSD environments.

On the one hand, these results could be attractive for AGSD practi-

tioners, since an implementation of AK Condensation could reduce the

amount of time wasted trying to find solutions to past problems, along

with reducing the number of interruptions among teammates, since an

additional source of AK would be available, i.e., an AK Condenser. In

addition, AGSD practitioners might be interested in an implementation

of AK Condensation because it could be a workaround to documentation

debt, a means to alleviate architectural technical debt, and thus reduce

AK vaporization. However, we are aware that there are cases of AGSD

teams in which there is even a team of architects in charge of all the

projects’ architectural issues, as this is also reported in the empirical

studies conducted by Clerc et al. [7] , Razzak & Smite [66] , and Alzoubi

& Gill [67] . AK vaporization could, therefore, occur less frequently than

in companies in which there is not a role or team that has these respon-

sibilities. This leads us to believe that AK Condensation may be more

appropriate for small and medium-sized AGSD companies, 7 which do

not have sufficient resources and infrastructure to have an architect role.

7 https://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses .

80

https://www.gartner.com/it-glossary/smbs-small-and-midsize-businesses

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

On the other hand, our results may be interesting for software en-

gineering researchers, since AK Condensation represents a convenient

way in which to manage AK without much obstruction to the devel-

opers’ work in AGSD. It may, therefore, be worth continuing exploring

the UTEM logs as an AK source. Furthermore, AK Condensation repre-

sents a first step toward converting AK from tacit to explicit in a formal-

ized manner [41] (e.g. UML notation), since AK would be structured by

a classification scheme, which could ease the formal representation of

this knowledge. Moreover, the impact of AK Condensation on the tran-

sitions between tacit and explicit knowledge and vice-versa (expressed

using the SECI model [68]) could be explored in the future, owing to the

close relation between AK Condensation and these two types of knowl-

edge.

As future work, we shall improve ArchiKCo by using artificial in-

telligence to ease tag selection, adding a context aware suggestion fea-

ture to the Tagging Helper component. We shall also develop new ver-

sions of this component that will run with other UTEM, such as Trello,

Slack, Jabber or Outlook, to be able to conduct studies in other con-

texts. AK Searcher must be adapted to these UTEM, since there will be

synchronous and asynchronous media, and the frequencies of messages

are different. Another improvement is the inclusion of a feature to ex-

clude personal messages, such that only work-related messages would

be considered during the search. In order to conduct evaluations in real

scenarios, we must also include a strategy to motivate developers to

tag. This strategy could be the following: when a developer finds a use-

ful AK, s/he could qualify the message author, which could incentivize

the best-qualified tagger. Finally, evaluations in real scenarios will allow

us to refine the meta-tag model, and to observe how AK Condensation

is conducted during pressure scenarios, thus enabling us to observe the

implications as regards adopting the concept in AGSD.

Acknowledgments

The authors are grateful to the participating companies: EMCOR,

Sahuaro Labs, Tufesa, Grupo SMI, Trapishar, Ubilogix and Softtek, for

the support provided to carry out the present study, and for their will-

ingness to continue working with us in future projects.

Funding

This work was supported by the National Council of Science and

Technology (whose acronym in Spanish is Conacyt) of Mexico, with

scholarship number 394125 for the first author. This work is also

partially supported by: GINSENG (TIN2015-70259-C2-1-R , Ministerio

de Economía y Competitividad y Fondo Europeo de Desarrollo Re-

gional FEDER); and G3Softproject (SBPLY/17/180501/000150) funded

by " Consejería de Educación , Cultura y Deportes de la Dirección General

de Universidades, Investigación e Innovación de la JCCM" of Spain.

Conflict of interest

We have no conflict of interest to declare.

References

[1] B. Ramesh, L. Cao, K. Mohan, P. Xu, Can distributed software development be agile?

Commun. ACM 49 (2006) 41, doi: 10.1145/1164394.1164418 .

[2] H. Holmstrom, E.O. Conchuir, P.J. Agerfalk, B. Fitzgerald, Global software

development challenges: a case study on temporal, geographical and socio-

cultural distance, Glob. Softw. Eng. (2006) 3–11 ICGSE ’06. Int. Conf. (2006),

doi: 10.1109/ICGSE.2006.261210 .

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

The Agile Manifesto, (2001). http://agilemanifesto.org/ .

[4] R. Hoda, J. Noble, S. Marshall, How much is just enough? in: Proc. 15th Eur.

Conf. Pattern Lang. Programs - Eur. ’10, New York, USA, ACM Press, 2010, p. 13,

doi: 10.1145/2328909.2328926 .

[5] A. Cockburn, J. Highsmith, Agile Software Development:the People Factor, Com-

puter 34 (2001) 131–133, doi: 10.1109/2.963450 .

[6] A.R. Yanzer Cabral, M.B. Ribeiro, R.P. Noll, Knowledge Management in Agile Soft-

ware Projects: a Systematic Review, J. Inf. Knowl. Manag. 13 (2014) 1450010,

doi: 10.1142/S0219649214500105 .

[7] V. Clerc, P. Lago, H. Van Vliet, Architectural knowledge management practices in

agile global software development, in: 2011 IEEE Sixth Int. Conf. Glob. Softw. Eng.

Work., IEEE, 2011, pp. 1–8, doi: 10.1109/ICGSE-W.2011.17 .

[8] M.A. Razzak, R. Ahmed, Knowledge sharing in distributed agile projects: techniques,

strategies and challenges, in: 2014 Fed. Conf. Comput. Sci. Inf. Syst., Warsaw,

Poland, IEEE, 2014, pp. 1431–1440, doi: 10.15439/2014F280 .

[9] E. Tom, A. Aurum, R. Vidgen, An exploration of technical debt, J. Syst. Softw. 86

(2013) 1498–1516, doi: 10.1016/j.jss.2012.12.052 .

[10] ISO/IEC/IEEE, Systems and software engineering – – Architecture architecture de-

scription, ISO/IEC/IEEE 420102011(E) (Revision ISO/IEC 420102007 IEEE Std

1471-2000). (2011) 1–46. doi:10.1109/IEEESTD.2011.6129467.

[11] P. Kruchten, P. Lago, H. van Vliet, in: Building Up and Reasoning About Ar-

chitectgural Knowledge, 4214, 2006, pp. 95–110, doi: 10.1007/11921998 . Lect.

Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics) .

[12] A. Moraes, E. Silva, C. da Trindade, Y. Barbosa, S. Meira, Recommending experts

using communication history, in: 2nd Int. Work. Recomm. Syst. Softw. Eng. - RSSE

’10, 2010, pp. 41–45, doi: 10.1145/1808920.1808929 .

[13] M. Aniche, M.A. Gerosa, C. Treude, Developers’ perceptions on object-oriented de-

sign and architectural roles, in: Proc. 30th Brazilian Symp. Softw. Eng., New York,

NY, USA, ACM, 2016, pp. 63–72, doi: 10.1145/2973839.2973846 .

[14] I. Ghani, M. Bello, Agile adoption in IT organizations, KSII Trans. Internet Inf. Syst.

9 (2015) 3231–3248, doi: 10.3837/tiis.2015.08.029 .

[15] A.M.M. Hamed, H. Abushama, Popular agile approaches in software development:

review and analysis, in: 2013 Int. Conf. Comput. Electr. Electron. Eng., 2013,

pp. 160–166, doi: 10.1109/ICCEEE.2013.6633925 .

[16] H.M. Sneed, Dealing with Technical Debt in agile development projects, Lect. Notes

Bus. Inf. Process. 166 (2014) 48–62 .LNBIP, doi: 10.1007/978-3-319-03602-1 .

[17] T. Clear, Documentation and Agile Methods: striking a Balance, SIGCSE Bull. 35

(2003) 12–13, doi: 10.1145/782941.782949 .

[18] H.-C. Estler, M. Nordio, C.A. Furia, B. Meyer, J. Schneider, Agile vs. structured dis-

tributed software development: a case study, in: Proc. IEEE Int. Conf. Glob. Softw.

Eng., 2012, doi: 10.1109/ICGSE.2012.22 .

[19] G. Borrego , A.L. Morán , R. Palacio , O.M. Rodríguez , Understanding archi-

tectural knowledge sharing in AGSD teams: an empirical study, in: 2016

IEEE 11th Int. Conf. Glob. Softw. Eng., Los Alamitos, CA, USA, IEEE Com-

puter Society, 2016, pp. 109–118. doi:doi.ieeecomputersociety.org/10.1109/ICGSE.

2016.29 .

[20] B. Selic, Agile documentation, anyone? IEEE Softw. 26 (2009) 11–12,

doi: 10.1146/annurev.ps.29.020178.002001 .

[21] M.L.I. Gervigny, S.D. Nagowah, Knowledge sharing for agile distributed teams :

a case study of Mauritius, in: 2017 Int. Conf. Infocom Technol. Unmanned

Syst., Dubay , UAE, IEEE Computer Society, 2017, pp. 413–419, doi: 10.1109/IC-

TUS.2017.8286043 .

[22] J. Bosch , Software architecture: the next step, in: F. Oquendo, B. Warboys, R. Mor-

rison (Eds.), EWSA, Springer, 2004, pp. 194–199 .

[23] K. Dalkir , Knowledge Management in Theory and Practice, Second ed., The MIT

Press, 2011 .

[24] R. Farenhorst, R.C. de Boer, Knowledge management in software architecture: state

of the art, in: M. Ali Babar, T. Dingsøyr, P. Lago, H. van Vliet (Eds.), Softw. Archit.

Knowl. Manag. Theory Pract., Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,

pp. 21–38, doi: 10.1007/978-3-642-02374-3_2 .

[25] S. Dorairaj, J. Noble, P. Malik, Knowledge management in distributed agile soft-

ware development, in: 2012 Agil. Conf., Dallas, USA, IEEE, 2012, pp. 64–73,

doi: 10.1109/Agile.2012.17 .

[26] M. Jiménez, M. Piattini, A. Vizcaíno, Challenges and improvements in distributed

software development: a systematic review, Adv. Softw. Eng. 2009 (2009) 14,

doi: 10.1155/2009/710971 .

[27] K.B. Awar, M.S.I. Sameem, Y. Hafeez, A model for applying Agile practices in Dis-

tributed environment: a case of local software industry, in: Proc. 2017 Int. Conf.

Commun. Comput. Digit. Syst. C-CODE 2017, 2017, pp. 228–232, doi: 10.1109/C–

CODE.2017.7918933 .

[28] T. Dingsøyr, Strategies and approaches for managing architectural knowledge,

in: M.A. Babar, T. Dingsøyr, P. Lago, H. van Vliet (Eds.), Softw. Archit. Knowl.

Manag., Springer, Berlin Heidelberg, 2009, pp. 59–68, doi: 10.1109/ASWEC.2008.

4483186 .

[29] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, M.A. Babar, 10 years of software ar-

chitecture knowledge management: practice and future, J. Syst. Softw. 116 (2016)

191–205, doi: 10.1016/j.jss.2015.08.054 .

[30] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali, A comparative study of

architecture knowledge management tools, J. Syst. Softw. 83 (2010) 352–370,

doi: 10.1016/j.jss.2009.08.032 .

[31] M. Galster, M.A. Babar, Empirical study of architectural knowledge manage-

ment practices, in: 2014 IEEE/IFIP Conf. Softw. Archit., 2014, pp. 239–242,

doi: 10.1109/WICSA.2014.28 .

[32] R. Farenhorst, R.C. De Boer, Knowledge management in software architecture :

sState of the art, (n.d.) 21–39. doi:10.1007/978-3-642-02374-3.

[33] N. Ali, S. Beecham, I. Mistrik, Architectural knowledge management in global soft-

ware development: a review, in: Glob. Softw. Eng. (ICGSE), 2010 5th IEEE Int. Conf.,

2010, pp. 347–352, doi: 10.1109/ICGSE.2010.48 .

[34] S. Beecham, J. Noll, I. Richardson, N. Ali, Crafting a global teaming model for archi-

tectural knowledge, in: Proc. – 5th Int. Conf. Glob. Softw. Eng. ICGSE 2010, 2010,

pp. 55–63, doi: 10.1109/ICGSE.2010.15 .

81

http://dx.doi.org/10.13039/501100008783
http://dx.doi.org/10.13039/501100010774
https://doi.org/10.1145/1164394.1164418
https://doi.org/10.1109/ICGSE.2006.261210
http://agilemanifesto.org/
https://doi.org/10.1145/2328909.2328926
https://doi.org/10.1109/2.963450
https://doi.org/10.1142/S0219649214500105
https://doi.org/10.1109/ICGSE-W.2011.17
https://doi.org/10.15439/2014F280
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1007/11921998
https://doi.org/10.1145/1808920.1808929
https://doi.org/10.1145/2973839.2973846
https://doi.org/10.3837/tiis.2015.08.029
https://doi.org/10.1109/ICCEEE.2013.6633925
https://doi.org/10.1007/978-3-319-03602-1
https://doi.org/10.1145/782941.782949
https://doi.org/10.1109/ICGSE.2012.22
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0017
https://doi.org/10.1146/annurev.ps.29.020178.002001
https://doi.org/10.1109/ICTUS.2017.8286043
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0021
https://doi.org/10.1007/978-3-642-02374-3_2
https://doi.org/10.1109/Agile.2012.17
https://doi.org/10.1155/2009/710971
https://doi.org/10.1109/C-CODE.2017.7918933
https://doi.org/10.1109/ASWEC.2008.\penalty -\@M 4483186
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1016/j.jss.2009.08.032
https://doi.org/10.1109/WICSA.2014.28
https://doi.org/10.1109/ICGSE.2010.48
https://doi.org/10.1109/ICGSE.2010.15

G. Borrego, A.L. Morán and R.R. Palacio et al. Information and Software Technology 112 (2019) 68–82

[35] P. Gaubatz, I. Lytra, U. Zdun, Automatic enforcement of constraints in real-time

collaborative architectural decision making, J. Syst. Softw. 103 (2015) 128–149,

doi: 10.1016/j.jss.2015.01.056 .

[36] S. Sherman, I. Hadar, M. Levy, N. Unkelos-Shpigel, Enhancing software architec-

ture via a knowledge management and collaboration tool, in: S. Kunifuji, G.A. Pa-

padopoulos, A.M.J. Skulimowski, K. Janusz (Eds.), Knowledge, Inf. Creat. Sup-

port Syst. Sel. Pap. from KICSS’2014 – 9th Int. Conf. Held Limassol, Cyprus,

Novemb. 6-8, 2014, Cham, Springer International Publishing, 2016, pp. 537–545,

doi: 10.1007/978-3-319-27478-2_41 .

[37] M. Che, D.E. Perry, G. Yang, Evaluating architectural design decision paradigms in

global software development, Int. J. Softw. Eng. Knowl. Eng. 25 (2015) 1677–1692,

doi: 10.1142/S0218194015400380 .

[38] C. Yang, P. Liang, P. Avgeriou, A systematic mapping study on the combination of

software architecture and agile development, J. Syst. Softw. 111 (2016) 157–184,

doi: 10.1016/j.jss.2015.09.028 .

[39] M.A. Babar, A.W. Brown, I. Mistrik, Agile Software Architecture: Align-

ing Agile Processes and Software Architectures, Elsevier Inc., 2013,

doi: 10.1016/C2012-0-01208-2 .

[40] G. Borrego, A.L. Morán, R. Palacio, O.M. Rodríguez-Elias, E. García-Canseco, Re-

view of approaches to manage architectural knowledge in Agile Global Software

Development, IET Softw. 11 (2017) 77–88, doi: 10.1049/iet-sen.2016.0197 .

[41] I. Nonaka , H. Takeuchi , The Knowledge-Creating company: How Japanese Compa-

nies Create the Dynamics of Innovation, Oxford University Press, New York, 1995 .

[42] H. Richter, G. Abowd, C. Miller, H. Funk, Tagging knowledge acquisition sessions

to facilitate knowledge traceability, Int. J. Softw. Eng. Knowl. Eng. 14 (2004) 3–19,

doi: 10.1142/S0218194004001543 .

[43] E. Bagheri, F. Ensan, Semantic tagging and linking of software engineering

social content, Autom. Softw. Eng. 23 (2016) 147–190, doi: 10.1007/s10515-

014-0146-2 .

[44] C. Treude, M.A. Storey, How tagging helps bridge the gap between social and techni-

cal aspects in software development, in: Proc. – Int. Conf. Softw. Eng., 2009, pp. 12–

22, doi: 10.1109/ICSE.2009.5070504 .

[45] M.A. Storey, J. Ryall, J. Singer, D. Myers, L.T. Cheng, M. Muller, How software

developers use tagging to support reminding and refinding, IEEE Trans. Softw. Eng.

35 (2009) 470–483, doi: 10.1109/TSE.2009.15 .

[46] S.M. Sohan, M.M. Richter, F. Maurer, Auto-tagging emails with user stories using

project context, in: Lect. Notes Bus. Inf. Process. 48 LNBIP, 2010, pp. 103–116,

doi: 10.1007/978-3-642-13054-0_8 .

[47] J.M. Al-kofahi, A. Tamrawi, T.T. Nguyen, H.A. Nguyen, T.N. Nguyen, Fuzzy set ap-

proach for automatic tagging in evolving software, Softw. Maint. (ICSM), 2010 IEEE

Int. Conf., IEEE, 2010, doi: 10.1109/ICSM.2010.5609751 .

[48] S. Jalali, C. Wohlin, Global software engineering and agile practices: a sys-

tematic review, J. Softw. Evol. Process. 24 (2012) 643–659, doi: 10.1002/

smr.561 .

[49] M. Levy, O. Hazzan, Knowledge management in practice: the case of agile software

development, in: 2009 ICSE Work. Coop. Hum. Asp. Softw. Eng., 2009, pp. 60–65,

doi: 10.1109/CHASE.2009.5071412 .

[50] J. Shore , S. Warden , The Art of Agile Development, First, O’Reilly, 2007 .

[51] E. Isaacs , S. Whittaker , D. Frohlich , . . . B. O’Conaill , Informal communication re-ex-

amined: new functions for video in supporting opportunistic encounters, Mediat.

Commun. (1997) 1–30 .

[52] C. Gutwin, S. Greenberg, M. Roseman, Workspace awareness in real-time distributed

groupware: framework, widgets, and evaluation, in: M.A. Sasse, R.J. Cunningham,

R.L. Winder (Eds.), People Comput. XI, Springer London, London, 1996, pp. 281–

298, doi: 10.1007/978-1-4471-3588-3_18 .

[53] H. Holz, G. Melnik, M. Schaaf, Knowledge management for distributed agile pro-

cesses: models, techniques, and infrastructure, in: Enabling Technol. Infrastruct.

Collab. Enterp. 2003. WET ICE 2003, IEEE, 2003, pp. 291–294, doi: 10.1109/EN-

ABL.2003.1231423 .

[54] N. Uikey , U. Suman , . . . A. Ramani , A documented approach in agile software devel-

opment, Int. J. Softw. 2 (2011) 13–22 .

[55] Z. Li, P. Liang, P. Avgeriou, Architectural debt management in

value-oriented architecting, Econ. Softw. Archit. (2014) 183–204,

doi: 10.1016/B978-0-12-410464-8.00009-X .

[56] S. Ryan, R.V. O’Connor, Acquiring and sharing tacit knowledge in software de-

velopment teams: an empirical study, Inf. Softw. Technol. 55 (2013) 1614–1624,

doi: 10.1016/j.infsof.2013.02.013 .

[57] M.A. Babar, Supporting the software architecture process with knowledge

management, Softw. Archit. Knowl. Manag. Theory Pract. (2009) 69–86,

doi: 10.1007/978-3-642-02374-3_5 .

[58] T. Zernadji, C. Tibermacine, F. Cherif, Processing the evolution of quality require-

ments of web service orchestrations: a pattern-based approach, in: Proc. – Work.

IEEE/IFIP Conf. Softw. Archit, 2014, pp. 139–142, doi: 10.1109/WICSA.2014.35 .

WICSA 2014. (2014) .

[59] G. Borrego, A.L. Morán, R. Palacio, Preliminary evaluation of a tag-based knowledge

condensation tool in agile and distributed teams, in: 2017 IEEE 12th Int. Conf. Glob.

Softw. Eng., 2017, pp. 51–55, doi: 10.1109/ICGSE.2017.14 .

[60] C. Wohlin , P. Runeson , M. Hst , M.C. Ohlsson , B. Regnell , A. Wessln , Experimentation

in Software Engineering, Springer Publishing Company, Incorporated, 2012 .

[61] J. Brooke, SUS-A quick and dirty usability scale, Usability Eval. Ind. 189 (1996) 194,

doi: 10.1002/hbm.20701 .

[62] F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of in-

formation technology, MIS Q. 13 (1989) 319–340, doi: 10.2307/249008 .

[63] J. Sauro , J.R. Lewis , Quantifying the User Experience: Practical Statistics for User

Research, first ed., Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 2012 .

[64] A. Bangor, P.T. Kortum, J.T. Miller, An empirical evaluation of the sys-

tem usability scale, Int. J. Hum. Comput. Interact. 24 (2008) 574–594,

doi: 10.1080/10447310802205776 .

[65] U. Dekel, J.D. Herbsleb, Pushing relevant artifact annotations in collaborative soft-

ware development, in: Proc. ACM 2008 Conf. Comput. Support. Coop. Work – CSCW

’08, 2008, p. 1, doi: 10.1145/1460563.1460565 .

[66] M.A. Razzak, D. Smite, Knowledge management in globally distributed agile projects

– lesson learned, in: Glob. Softw. Eng. (ICGSE), 2015 IEEE 10th Int. Conf., Ciudad

del Real, Spain, 2015, pp. 81–89, doi: 10.1109/ICGSE.2015.22 .

[67] X. Shen, Y. Li, Y. Sun, An agile enterprise architecture-driven model for geographi-

cally distributed agile development, transform, Healthc. Through Inf. Syst. 17 (2016)

185–197, doi: 10.1007/978-3-319-30133-4 .

[68] I. Nonaka, R. Toyama, N. Konno, SECI, Ba and leadership: a unified

model of dynamic knowledge creation, Long Range Plan. 33 (2000) 5–34,

doi: 10.1016/S0024-6301(99)00115-6 .

[69] F. Calefato, D. Gendarmi, F. Lanubile, Investigating the use of tags in collaborative

development environments: a replicated study, in: Proc. 2010 ACM-IEEE Int. Symp.

Empir. Softw. Eng. Meas, 24, 2010, pp. 1–24, doi: 10.1145/1852786.1852818 . 9 .

[70] A. Forward, T. Lethbridge, D. Deugo, CodeSnippets plug-in to eclipse: introduc-

ing web 2.0 tagging to improve software developer recall, in: Proc. – SERA

2007 Fifth ACIS Int. Conf. Softw. Eng. Res. Manag. Appl., 2007, pp. 498–502,

doi: 10.1109/SERA.2007.81 .

[71] S. Paul, T. Makkar, K. Chandrasekaran, Software development using context aware

searching of components in large repositories, in: Int. Conf. Comput. Commun. Au-

tom., IEEE, 2015, pp. 765–772, doi: 10.1109/CCAA.2015.7148513 .

82

https://doi.org/10.1016/j.jss.2015.01.056
https://doi.org/10.1007/978-3-319-27478-2_41
https://doi.org/10.1142/S0218194015400380
https://doi.org/10.1016/j.jss.2015.09.028
https://doi.org/10.1016/C2012-0-01208-2
https://doi.org/10.1049/iet-sen.2016.0197
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0038
https://doi.org/10.1142/S0218194004001543
https://doi.org/10.1007/s10515-\penalty -\@M 014-0146-2
https://doi.org/10.1109/ICSE.2009.5070504
https://doi.org/10.1109/TSE.2009.15
https://doi.org/10.1007/978-3-642-13054-0_8
https://doi.org/10.1109/ICSM.2010.5609751
https://doi.org/10.1002/\penalty -\@M smr.561
https://doi.org/10.1109/CHASE.2009.5071412
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0048
https://doi.org/10.1007/978-1-4471-3588-3_18
https://doi.org/10.1109/ENABL.2003.1231423
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0051
https://doi.org/10.1016/B978-0-12-410464-8.00009-X
https://doi.org/10.1016/j.infsof.2013.02.013
https://doi.org/10.1007/978-3-642-02374-3_5
https://doi.org/10.1109/WICSA.2014.35
https://doi.org/10.1109/ICGSE.2017.14
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0057
https://doi.org/10.1002/hbm.20701
https://doi.org/10.2307/249008
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30089-8/sbref0060
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1145/1460563.1460565
https://doi.org/10.1109/ICGSE.2015.22
https://doi.org/10.1007/978-3-319-30133-4
https://doi.org/10.1016/S0024-6301(99)00115-6
https://doi.org/10.1145/1852786.1852818
https://doi.org/10.1109/SERA.2007.81
https://doi.org/10.1109/CCAA.2015.7148513

	Table of Contents
	Synaptix: A Web Platform based on Gamification Techniques for the Study of Clinical Cases
	Towards a reduction in architectural knowledge vaporization during agile global software development
	1 Introduction
	2 Related work
	2.1 Architectural knowledge management in agile and global software development
	2.2 Architectural knowledge management solutions based on social tagging
	2.3 Architectural knowledge vaporization consequences in agile and global software development

	3 A proposal of architectural knowledge condensation
	3.1 Conceptual definition
	3.2 Prototype of architectural knowledge condenser
	3.2.1 Accessible UTEM log information
	3.2.2 UTEM log classification mechanism
	3.2.3 Architectural knowledge searching mechanism

	3.3 Architectural knowledge condensation in agile and global software development

	4 Method to evaluate architectural knowledge condensation feasibility
	4.1 Scoping
	4.2 Planning
	4.2.1 Context selection
	4.2.2 Selection of subjects
	4.2.3 Study design
	4.2.4 Variables selection
	4.2.5 Hypotheses formulation
	4.2.6 Instrumentation

	4.3 Operation
	4.3.1 Preparation
	4.3.2 Execution
	4.3.3 Data collection
	4.3.4 Data validation

	5 Results
	5.1 AK structuring part
	5.1.1 Tags validity
	5.1.2 Tagging correctness
	5.1.3 Overall tagging behavior
	5.1.4 Tagging helper usability and unobtrusiveness

	5.2 AK retrieval
	5.2.1 Media preference results
	5.2.2 Correctness of the results
	5.2.3 Time to find correct answers
	5.2.4 Extended TAM results
	5.2.5 AK retrieval results summary
	5.2.6 Lessons learned by using Archikco prototype
	5.2.7 AK structuring
	5.2.8 AK retrieval
	5.2.9 AK condensation

	6 Threats to validity
	6.1 Conclusion validity
	6.2 Internal validity
	6.3 Construct validity
	6.4 External validity

	7 Discussion
	7.1 AK classification mechanism
	7.2 AK searching mechanism
	7.3 Feasibility of AK condensation

	8 Conclusions and future work
	Acknowledgments
	Funding
	Conflict of interest
	References

