Calidad de agua subterránea en la Reserva de la Biosfera de El Vizcaíno B. C. S., México

S. Chávez-López^{1*} y L. Brito-Castillo²

¹ Centro de Investigaciones Biológicas del Noroeste, S.C., Mar Bermejo No. 195, Col. Playa Palo de Santa Rita La Paz, B. C. S. México., C. P. 23090

² Centro de Investigaciones Biológicas del Noroeste S.C., Unidad Guaymas. Km. 2.35 Camino al Tular, Estero de Bacochibampo Guaymas, Sonora 85454

Groundwater quality at the El Vizcaino Biosphere Reserve, Baja California Sur, Mexico.

Abstract

The geological and hydrological background of the El Vizcaino Biosphere Reserve (RBV, its Spanish acronym) along with data from the chemical analyses shown in the groundwater hydrology maps of the National Institute of Statistics, Geography and Data Processing (INEGI), as well as that of 28 wells sampled in 2003, were analyzed. These analyses allowed to identify three water-quality zones associated with the lithology of the tectonic regions of the RBV, which are made evident by the interpolation of total dissolved solids (TDS) data and confirmed by the Multivariate Empirical Orthogonal Function Analysis. These zones show a tendency towards concentrating freshwater wells, waterwheels and springs at the Miocene Volcanic Belt, where TDS are below 525 mg Γ^1 and similarity index is below –0.8; tolerable to salty in the California Syncline with TDS concentrations over 1400 mg Γ^1 and a positive index greater than 0.0. These results are consistent with other studies conducted in the El Vizcaino Biosphere Reserve, indicating that the groundwater distribution is an inherent aspect of the lithology that characterizes the reserve's tectonic regions.

Key words: Geomorphology, tectonic scheme, lithology, facies, wells.

Resumen

Se analizaron los antecedentes geológicos e hidrológicos de la Reserva de la Biosfera del Vizcaíno (RBV) y la información de los análisis químicos presentados en las cartas hidrológicas de aguas subterráneas del Instituto Nacional de Estadística, Geografía e Informática (INEGI), así como la de 28 pozos muestreados en 2003. Lo anterior permitió reconocer tres zonas de calidad de agua asociadas a la litología que integra las regiones tectónicas de la RBV, evidenciadas en la interpolación de los datos de total de sólidos disueltos (TSD) y confirmadas con el análisis multivariado de Funciones Empíricas Ortogonales. Dichas zonas muestran tendencia a concentrar pozos, norias y manantiales de calidad de agua dulce en el Cinturón Volcánico Miocénico en donde las concentraciones de TSD son menores a 525 mg Γ^1 y un índice de similitud menor de -0.8; agua de tolerable a salada en el Sinclinal Californiano con TSD de entre 525 -1400 mg Γ^1 , y un índice de -0.8 a 0.0, y agua salada en el Bloque tectónico mesozoico con concentraciones de TSD superiores a los 1400 mg Γ^1 y un índice positivo y mayor de 0.0. Estos resultados son consistentes con otros estudios realizados en la RBV, e indican que la distribución de su calidad de agua subterránea, es un aspecto inherente a la litología que caracteriza sus regiones tectónicas.

Palabras clave: Geomorfología, esquema tectónico, litología, facies, pozos.

*Autor de correspondencia

Email: schavez04@cibnor.mx; Tel: +612 123-8428

Introducción

La Reserva de la Biosfera de El Vizcaíno, es una región árida con déficit de precipitaciones, por lo que el aprovechamiento de sus recursos hídricos superficiales se limita a manantiales de gasto reducido en las áreas serranas. Hacia la llanura del Vizcaíno, en donde se ubican las principales localidades, el abastecimiento de agua proviene de la extracción subterránea, por lo que es en esta región en donde se concentran la mayoría de pozos y norias.

Según la Comisión Nacional del Agua (CNA, 2002), el 93 % del agua extraída del acuífero 302 Vizcaíno, es para uso agrícola, el 6% para uso público-urbano y el 1 % para uso pecuario y doméstico. De igual forma refiere que la extracción de agua subterránea se encuentra en constante incremento, ocasionando la sobre-explotación del acuífero, con un déficit anual de -1.69 Mm³ (Recarga 40.7 Mm³, Explotación 42.39 Mm³).

La región de la RBV, no cuenta con un padrón espacio-temporal, del total de las obras hidráulicas (pozos, norias) que permita dar seguimiento y observar el comportamiento geohidrológico y sanidad de los acuíferos a través del tiempo. La escasa información sobre calidad de agua ha llevado a formular conclusiones sesgadas en función déficit de precipitaciones y el constante incremento de la extracción de agua, generando desinformación y la percepción generalizada de un proceso de salinización e intrusión salina en sus acuíferos (SEMARNAT, 2007). Por lo anterior el propósito del presente trabajo es aportar información que nos permita entender la distribución de la calidad de agua en la región de la RBV.

Localización y antecedentes

La Reserva de la Biosfera de El Vizcaíno, se ubica en la porción media de la península de Baja California. La integran tres unidades geomorfológicas (figura 1); en la porción occidental

Figura 1. Ubicación de la Reserva de la Biosfera de El Vizcaíno y Unidades geomorfológicas de la región.

Sierras bajas (Santa Clara, y San José de Castro), en la oriental sierras altas (La Giganta) con elevaciones superiores a los 700 m, y llanura en la central (Desierto de El Vizcaíno).

Estructuralmente la región de la Reserva, se encuentra en una depresión denominada Cuenca del Vizcaíno, la cual Lozano (1976), interpretó como un sinclinal e identificó una secuencia litológica del Triásico al Reciente que atestigua regresiones y transgresiones marinas. La actividad tectónica ha condicionado el marco regional en tres franjas con características litológicas y estructurales distintivas (CRM, 1999; Sedlock, et al., 1993), en las que se reconocen dos principales fases de deformación (Hausback, 1984; Moore, 1984); una compresiva al occidente, la cual manifiesta la evolución estructural de una paleocorteza oceánica en un límite convergente, dando origen al Bloque tectónico mesozoico (sierras bajas: Santa Clara, y San José de Castro) (figura 1, 2), y una distensiva al oriente relacionada con la apertura del Golfo de California. y que afecta estructuralmente al Cinturón volcánico miocénico (sierras altas: La Giganta). La tercer frania corresponde al Sinclinal Californiano (llanura: Desierto de EL Vizcaíno), colmatado con rocas sedimentarias de las formaciones del Mesozoico y Cenozoico que atestiguan ambientes de plataforma, costeros, y continentales (figura 2).

En la región del Bloque tectónico mesozoico CNA (2007), ubica la zona geohidrológica 301 Punta Eugenia (figura 2), en la cual INEGI (1996), reporta un acuífero de tipo libre, que se encuentra en arenisca-conglomerado de la Formación Valle (Cretácico Superior) y en limolita-arenisca de la Formación Almejas (Plioceno), ambas de origen marino, cuya calidad de agua reportada para pozos y norias es salada, perteneciente a la familia de aguas sulfatadas, clorurada-sódica y mixta con tendencia a clorurada.

Para la región del Sinclinal Californiano CNA (2007), ubica las zonas geohidrológicas 302 Vizcaíno y 303 San Ignacio (figura 2), en las cuales INEGI (1996), refiere acuíferos de tipo libre en una secuencia sedimentaria del Plioceno-Pleistoceno, y depósitos del Reciente, de ambiente marino, continental y mixto con calidad de agua dulce, tolerable y salada. Lo cual concuerda con CNA (2002), que refiere el acuífero 302 Vizcaíno, formado en su mayor parte por arenas y gravillas con intercalaciones de arcilla con diferentes características de compactación en los primeros 100 m, variando hasta 250 m en la porción central de la llanura.

Para la región del Cinturón volcánico miocénico CNA (2007), ubica las zonas geohidrológicas 339 Paralelo 28 y 338 Las Vírgenes (figura 2), en donde INEGI (1996), reporta para la zona Paralelo 28, agua dulce y tolerable, mientras que para Las Vírgenes agua tolerable a salada. La misma fuente refiere el acuífero de la zona Las Vírgenes en depósitos de origen aluvial (Cuaternarios), así como en rocas volcánicas de la Formación Comondú, en donde las obras hidráulicas alcanzan los 250 m de profundidad.

Por su parte CFE (1991), reporta en la zona geohidrológica 338 Las Vírgenes, la existencia de manantiales termales y fríos, refiere calidad de agua en el límite de tolerable a salada muy dura y agresiva, con tres tipos químicos de agua: sulfatado ácido, sulfatado sódico pertenecientes a manantiales termales y Clorurado sódico en manantiales fríos.

La Información estratigráfica v tectónica referida presupone que la geología estructural del Sinclinal Californiano es más compleja de lo que CNA (2002), presenta como perfil geológico del acuífero de Vizcaíno, el cual corresponde a una versión simplificada del perfil de Lozano (1976). Lo que sugiere que se desconoce el detalle de la geología estructural de las zonas geohidrológicas de la Reserva a excepción de la zona geohidrológica 338 Las Vírgenes, en donde los trabajos geofísicos de Bigurra-Pimentel (1998), García-Estrada y González-López (1998), López-Hernández (1998) v Palma-Guzmán (1998), han permitido determinar que el campo geotérmico de Las Tres Vírgenes se encuentra emplazado en una cuenca tipo graben y la existencia de un acuífero regional semiconfinado entre los 600 y 700 m de profundidad, en material volcano-sedimentario que fluye a lo largo de grabens, con agua tipo clorurada-sódica (9000 ppm de Cl⁻ y 4500 ppm de Na⁺), la cual CFE (1991) refiere como de origen marino diluida y atrapada en rocas hidrolisitas sedimentarias.

Material y Métodos

El presente trabajo se apoya en una revisión bibliográfica, cartas topográficas, geológicas e hidrológicas de INEGI, y en las cartas Geológico-Mineras, del Consejo de Recursos Minerales (CRM), G11-3, G12-1 y G12-4, escala 1:250 000. En campo del 3 al 7 de mayo de 2003, se muestrea-

Chávez-López et al. / Revista Latinoamericana de Recursos Naturales 6 (1): 7-20, 2010

Figura 2. Esquema tectónico de la región de la Reserva de la Biosfera de El Vizcaíno (modificado de CRM, 1999). Zonas geohidrológicas según CNA (2007). Ubicación de pozos, norias y manantiales muestreados por INEGI (1983, 1989) y CIBNOR (2003).

ron 28 pozos, posicionados con GPS Magellan 315, el reconocimiento geomorfológico-geológico, se efectuó del 7 al 10 de septiembre de 2004; 9 al 13 de julio de 2005 y del 26 al 31 de enero de 2007.

Para discutir sobre la calidad del agua subterránea en la RBV, se emplea la información de análisis químicos de las cartas hidrológicas de aguas subterráneas G12-1 y G11-3, de INEGI (1983, 1989), así como la de los análisis químicos de los 28 pozos muestreados. Los análisis químicos de estos últimos se efectuó en los laboratorios de Análisis químico de agua y Espectrofotometría de absorción atómica (certificados por la ISO-9001-2000), del Centro de Investigaciones Biológicas del Noroeste (CIBNOR), siguiendo el protocolo del Standard Methods (Eaton *et al.*, 2005) y la Norma Mexicana de aguas NMX-AA-051 (SCFI, 2001).

La información de: Ca^{2+} , Mg^{2+} , Na^+ , RAS, K^+ , $CaCO_3$, pH, CE, SO_4^{2-} , HCO_3^- , Cl⁻ y TSD, que se presenta en las cartas hidrológicas de aguas subterráneas G12-1, G11-3, de INEGI (1983, 1989), y la de los pozos muestreados que se presenta en la tabla 1, se analizó por separado mediante la rutina *Factor Analysis Orthogonal (Principal Components)*, empleando para ello el programa para computadora STATISTICA Ver. 5.1. Dicho análisis

se efectúa con el propósito de identificar grupos de calidad de agua, partiendo de un índice de correlación (similitud), que es función de las variables semejantes (parámetros registrados, en pozos, norias y manantiales) y agruparlas. De este análisis se obtuvieron tres factores para cada caso. Para los datos de INEGI, los factores acumulan el 72 % de la varianza, con el 48 % en el factor uno, 14 % en el factor dos y 10 % en el factor tres. Para los pozos muestreados, los factores explican el 79 % de la varianza, con 49 % en el factor uno, 21 % en el factor dos y 9 % en el tres.

Puesto que el factor 1 en ambos casos explican el mayor porcentaje de la varianza, se emplean sus coeficientes para correlacionarlos con los datos del rango de calidad de agua (en función del TSD), cuya interpolación (distribución espacial) a su vez, resume la mayoría de las interpolaciones de los parámetros químicos tanto de INEGI (1983, 1989), como las del muestreo realizado (tabla 2). Dichas interpolaciones, se elaboraron empleando el programa para PC, SURFER 8.00 de Golden Sofware, Inc. En el presente trabajo solo se presentan las que resumen y describen las características de calidad de agua en la RBV.

L	I -4 N	N	Ca ²⁺	Mg^{2+}	Na^+	pН	CE*	SO_4^{2-}	NO ₃ -N
Long. w	Lat. N	INO.	(mg l ⁻¹)	$(mg l^{-1})$	(mg l ⁻¹)		$(\mu S \text{ cm}^{-1})$	$(mg l^{-1})$	(mg l ⁻¹)
113.9731	27.9706	1	69	45	232	7.8	2046	52.2	1.01
113.8344	27.8797	2	43	27	147	7.8	973	21.5	0.42
113.7003	27.8258	3	31	28	53	7.7	481	50.4	1.74
113.4522	27.7172	4	18	13	119	7.8	576	28.1	5.15
113.4419	27.6158	5	14	16	75	7.8	600	19.4	3.08
113.4803	27.6214	6	29	39	108	7.8	1152	67.2	9.37
113.4678	27.6811	7	64	30	107	7.9	1142	48.1	14
113.9736	27.9242	8	67	63	1698	8.3	7100	98.4	1.41
113.9633	27.9169	9	63	52	1063	8.2	4038	68.5	0.78
113.9181	27.8856	10	67	40	545	7.9	4098	24.2	0.76
113.8569	27.8536	11	56	94	317	7.8	3169	54.8	0.66
113.8325	27.8175	12	100	138	401	7.8	2205	105	0.94
113.8281	27.8336	13	118	95	405	8.3	2135	53.4	0.69
113.8233	27.8144	14	22	24	273	8.1	1842	46.8	1.18
113.8297	27.7883	15	45	41	290	7.9	1372	72.7	0.36
113.7836	27.7808	16	54	43	187	7.9	1734	94.1	4.26
113.7792	27.7467	17	24	25	120	8	1039	36.7	0.99
113.8264	27.6706	18	12	20	382	8	2431	53.8	1.51
113.7556	27.6181	19	25	42	456	8.1	3304	62.9	4.93
113.7197	27.5756	20	13	24	306	8	2061	50.9	3.99
113.6769	27.5294	21	14	15	260	7.8	2594	61.6	0.56
113.44	27.6103	22	8	11	76	7.9	486	13.7	2.09
113.0267	27.5925	23	11	11	19	8.3	268	6.1	5.74
113.0194	27.5978	24	94	26	27	8.2	408	2.3	0.76
113.3961	28.0314	25	218	68	129	7.6	1279	128	2.95
113.5186	28.2094	26	57	30	91	8	480	27	3.43
113.3367	27.525	27	100	84	83	7.8	1134	67	8.78
112.8953	27.3	28	74	49	219	7.8	946	107	2.74

Tabla 1. Coordenadas, resultados del análisis químico de los 28 pozos muestreados y factor 1 resultado del análisis estadístico.

CE* conductividad eléctrica.

Tabla 1. Continua.

T 337	T / NT	N-	Cl ⁻	Т	S	CaCO ₃	TSD	F (1
Long. w	Lat. N	NO.	(mg l ⁻¹)	(°C)	psu	(mg l ⁻¹)	(mg 1 ⁻¹)	Factor 1
113.9731	27.9706	1	476.5	21.3	1	357	1371	0.1229
113.8344	27.8797	2	301.9	23.5	0.6	218	430	-0.6039
113.7003	27.8258	3	124.9	24.8	0.3	192	222	-0.9126
113.4522	27.7172	4	152.1	26	0.4	98	277	-1.0580
113.4419	27.6158	5	61.5	25.7	0.3	101	402	-1.0798
113.4803	27.6214	6	226.3	26.4	0.6	233	772	-0.7119
113.4678	27.6811	7	221.7	24.8	0.6	283	765	-0.7345
113.9736	27.9242	8	1342.9	17	3.9	426	4757	3.2604
113.9633	27.9169	9	989.9	17.8	2.2	371	2705	1.6798
113.9181	27.8856	10	1001	19.6	2.2	331	2746	1.1494
113.8569	27.8536	11	746.6	22.5	1.7	526	2123	0.8089
113.8325	27.8175	12	1029.5	21.7	1.1	817	1477	1.0798
113.8281	27.8336	13	973.3	19.4	1.1	685	1430	1.0045
113.8233	27.8144	14	445.2	19.7	0.9	153	1234	0.0240
113.8297	27.7883	15	565	22.9	0.7	281	919	-0.0385
113.7836	27.7808	16	390.8	22.1	0.9	311	1162	-0.0066
113.7792	27.7467	17	247.9	22.6	0.5	163	696	-0.5274
113.8264	27.6706	18	628.6	21.3	1.2	112	1629	0.2152
113.7556	27.6181	19	661.8	19.2	1.7	235	2214	0.7336
113.7197	27.5756	20	496.8	22.6	1.1	131	1381	-0.0539
113.6769	27.5294	21	800	22.9	1.3	96	1738	0.1840
113.44	27.6103	22	737.4	25.1	0.2	65	326	-0.8061
113.0267	27.5925	23	27.1	27.3	0.1	73	180	-1.2371
113.0194	27.5978	24	32.9	24.4	0.2	341	273	-0.8035
113.3961	28.0314	25	499.6	30.5	0.6	822	857	-0.0243
113.5186	28.2094	26	130.1	27	0.2	265	322	-0.9175
113.3367	27.525	27	374.7	26.5	0.6	595	760	-0.3242
112.8953	27.3	28	356.2	29.2	0.5	386	634	-0.4229

Resultados y discusión

En la figura 2, se presenta la distribución espacial de pozos, norias y manantiales de las cartas hidrológicas de aguas subterráneas G12-1 y G11-3, de INEGI (1983; 1989), y sus coordenadas geográficas en la tabla 1 (las coordenadas de las obras hidráulicas de la 1 a la 122 corresponden a la carta G12-1 y de 123 a 135 a la carta G11-3).

La interpolación de los datos de nivel estático (INEGI, 1983; 1989), que se muestra en la figura 3, señala un aumento en su profundidad hacia la parte occidental de la sierra de La Giganta (sierras altas). Esta Información es consistente con la de INEGI (1996), que menciona que la profundidad del nivel estático aumenta conforme la elevación topográfica, por lo que el flujo de agua subterránea se da de la zona peninsular hacia el mar. Es de hacer notar que en la zona de llanura de El Vizcaíno, existen diferencias notables en las profundidades y nivel estático de obras hidráulicas relativamente cercanas, lo que evidencia la complejidad de la geología estructural de los acuíferos en la región de la Reserva.

Las concentraciones de CaCo₃ (INEGI, 1983; 1989), que se interpolan en la figura 4, señalan que el agua subterránea en la mayor parte de la Reserva es muy dura, con valores que superan los 1100 mg Γ^1 en áreas del Bloque Tectónico Mesozoico (Sierra Santa Clara), en donde según los términos de referencia de las cartas hidrológicas de aguas subterráneas de INEGI, corresponden a agua agresiva. En esta misma área las altas concentraciones de CaCO₃, son consistentes con las de TSD (superiores a los 1400 mg Γ^1), al igual que en la porción norte de la laguna San Ignacio, por lo que su calidad de agua es salada (figura 5).

La calidad de agua tolerable con rango de TSD, de entre 525 –1400 mg Γ^1 y de poco dura a dura (CaCo₃, 75 – 300 mg Γ^1), se encuentra asociada al Sinclinal Californiano (llanura del Vizcaíno), mientras que la calidad de agua dulce se limita a la zona occidental del Cinturón Volcánico Miocénico, conformado por la zona de bajada con lomeríos de la Sierra de La Giganta, en donde las concentraciones de TSD es menor a 525 mg Γ^1 y CaCo₃ menor a 75 mg Γ^1 , por lo que se considera agua suave e incrustante.

Esta tendencia a concentrar pozos, norias y manantiales en tres zonas (figura 2, 5), se observa también en la figura 6, que corresponden a la

interpolación de calidad de agua de los pozos muestreados, cuyos resultados y distribución espacial se presenta en la tabla 1 y figura 2 respectivamente.

Para verificar dichas tendencias, se emplean los coeficientes del Factor 1 (tablas 1 y 2), que resulta de aplicar el análisis multivariado de Funciones Empíricas Ortogonales. Estos coeficientes se emplean como índice de similitud para agrupar manantiales, pozos y norias según su calidad de agua.

Los coeficientes extremos del Factor 1, tanto para los datos de INEGI (1983, 1989), como para los pozos muestreados indican que existen diferencias significativas en su composición química, lo cual se refleja en las concentraciones del total de sólidos disueltos, ya que en el caso de INEGI, el coeficiente de -1.09 se asocia al mínimo de 293 mg Γ^1 de TSD que corresponden al manantial 121, y el máximo de 6243 mg Γ^1 , al manantial 123 con un coeficiente de 3.86; mientras que para los pozos muestreados los valores mínimo y máximo corresponden al pozo 23 y 8 con coeficientes de -1.23 y 3.26, TSD de 180 y 4757 mg Γ^1 , respectivamente (tablas 1, 2 y figuras 5, 6).

Esta situación se evidencia en la figura 7, que muestra la correlación de los coeficientes del Factor 1, contra las concentraciones del total de sólidos disueltos, lo que nos permite obtener índices de similitud, ya que los pozos, norias y manantiales con un coeficiente menor de –0.8 señalan calidad de agua dulce, de -0.8 a 0.0 tolerable y un coeficiente positivo y mayor de 0.0, agua salada. La interpolación de estos índices de similitud, se muestra en la figura 8, la cual es consistente con la tendencia espacial que se muestra en las figuras 5 y 6, al concentrar pozos, norias y manantiales en tres franjas de calidad de agua asociadas a las regiones tectónicas de la RBV (figura 2).

Discusión

La descripción hecha en antecedentes con información de INEGI (1996), CNA (2007) y CRM (1999), concuerda con la obtenida empleando los parámetros químicos de INEGI (1983, 1989), y la de los pozos muestreados; en tres zonas de calidad de agua.

De la información presentada, resulta conveniente la estratigrafía de las formaciones del Mioceno al Pleistoceno, ya que junto con los depósitos Cuater-

Chávez-López et al. / Revista Latinoamericana de Recursos Naturales 6 (1): 7-20, 2010

Figura 3. Interpolación de los datos de nivel estático (datos tomados de las cartas hidrológicas de aguas subterráneas de INEGI: G12-1 y G11-3).

3 CINTURON VOLCANICO MIOCENICO (SIERRAS ALTAS)

Figura 4. Interpolación de los valores de CaCo₃, (datos tomados de las cartas hidrológicas de aguas subterráneas de INEGI: G12-1 y G11-3).

Figura 5. Interpolación de los valores de total de sólidos disueltos, presentados en la tabla 1 (datos tomados de las cartas hidrológicas de aguas subterráneas de INEGI: G12-1 y G11-3).

Figura 6. Interpolación de los valores de total de sólidos disueltos, presentados en la tabla 2, de acuerdo a los rangos que se muestran en las Cartas Hidrológicas de Aguas Subterráneas de INEGI.

Long. W	Lat. N	No.	TSD	Factor 1	Long. W	Lat. N	No.	TSD	Factor 1
113.9680	27.9844	1	752	-0.4839	113.44457	27.64458	33	699	-0.483
113.9614	27.9778	2	774	-0.4618	113.46095	27.63721	34	1199	0.04801
113.9739	27.9716	3	924	-0.3446	113.38432	27.63765	35	547	-0.6677
113.9686	27.9652	4	921	-0.3275	113.38231	27.62723	36	452	-0.9451
113.7774	27.9291	5	714	-0.3594	113.75523	27.62373	37	1243	0.77114
113.7885	27.9194	6	567	-0.5691	113.45185	27.62084	38	1018	-0.0401
113.7764	27.9198	7	564	-0.5467	113.75894	27.61719	39	1151	-0.2357
113.7764	27.9111	8	614	-0.4951	113.34299	27.60880	40	441	-0.9619
113.7219	27.9088	9	610	-0.503	113.51598	27.57252	41	1021	-0.2022
113.2068	27.8986	10	559	-0.5979	113.54738	27.57104	42	1335	0.2371
113.7837	27.8842	11	627	-0.4963	113.53268	27.56269	43	1413	0.37028
113.1361	27.8876	12	627	-0.4526	113.37453	27.56048	44	439	-1.0191
113.8342	27.8838	13	707	-0.404	113.73189	27.55810	45	1419	0.12033
113.8328	27.848	14	1046	-0.154	113.5180	27.55234	46	1437	0.49587
113.6976	27.8433	15	528	-0.5926	113.57762	27.55396	47	1379	0.08688
113.6864	27.8421	16	805	-0.2064	113.37502	27.54988	48	875	-0.2673
113.3163	27.8362	17	499	-0.9277	112.5630	27.54101	49	1324	0.286
113.6986	27.8307	18	575	-0.5358	113.60006	27.53625	50	1113	-0.232
113.8098	27.8238	19	2450	1.0253	113.51585	27.53716	51	971	-0.245
113.3081	27.8156	20	395	-1.0274	113.56956	27.53777	52	1134	-0.1953
113.815	27.7780	21	1478	0.3587	113.3575	27.53410	53	593	-0.5524
113.5932	27.7763	22	487	-0.9139	113.53931	27.53147	54	1393	0.05037
113.4696	27.7586	23	539	-0.7108	113.33556	27.52612	55	462	-0.905
113.8248	27.672	24	2113	0.8522	113.67641	27.52680	56	1746	0.48448
113.4647	27.6715	25	1389	0.4008	113.52225	27.52431	57	1106	-0.3196
113.5956	27.6655	26	1295	0.2792	113.54133	27.51797	58	1627	0.66826
113.8175	27.6646	27	1178	-0.1155	113.3322	27.51701	59	553	-0.5991
113.4415	27.6603	28	1152	0.0526	113.62792	27.51636	60	1605	0.34086
113.4332	27.6596	29	800	-0.3129	112.94456	27.51709	61	778	-0.4437
113.8028	27.6569	30	1718	0.6126	112.9244	27.51349	62	499	-0.8217
113.4657	27.6567	31	1271	0.1381	113.50638	27.49489	63	1377	-0.0637
113.3885	27.6466	32	450	-0.9557	113.30108	27.48263	64	599	-0.5916

Tabla 2. Coordenadas de pozos, norias y manantiales, total de sólidos disueltos (TSD) y Factor 1, resultado del análisis estadístico de los parámetros químicos de las cartas de aguas subterráneas de INEGI G12-1 y G11-3, (1983, 1989).

Tabla 2. Continua.

Long. W	Lat. N	No.	TSD	Factor 1	Long. W	Lat. N	No.	TSD	Factor 1
113.30485	27.46778	65	1125	0.1674	112.77679	27.14088	101	499	-0.9357
113.49496	27.45486	66	1162	-0.1925	112.90121	27.1473	102	761	-0.5124
113.42548	27.41826	67	1763	0.6814	112.10717	27.135	103	890	-0.2653
113.26174	27.41624	68	554	-0.6635	112.90625	27.14119	104	609	-0.2271
112.51451	27.40278	69	967	-0.2773	112.08587	27.12524	105	1270	0.0914
112.57428	27.39435	70	536	-0.7508	112.98891	27.1223	106	952	-0.3324
112.71211	27.36513	71	722	-0.5199	112.97883	27.1205	107	963	-0.3362
113.19645	27.36388	72	516	-0.8769	112.48589	27.11421	108	1024	-0.0355
113.38896	27.35054	73	1517	0.8005	112.07401	27.10773	109	1418	0.54974
113.21827	27.34675	74	705	-0.4032	112.93145	27.11241	110	561	-0.7042
113.3881	27.33805	75	1463	0.6721	112.35531	27.10218	111	704	-0.5729
113.22866	27.33499	76	721	-0.4253	113.57359	27.10072	112	1148	-0.0565
112.77627	27.33125	77	786	-0.4043	112.52771	27.09066	113	1039	-0.2805
113.3302	27.31862	78	1076	0.0827	112.11169	27.08095	114	1039	-0.2805
112.65454	27.31516	79	548	-0.6841	112.36103	27.06899	115	692	-0.5897
113.34215	27.31298	80	1409	0.7148	112.23558	27.06475	116	926	-0.2903
112.76844	27.30536	81	782	-0.1588	112.25504	27.05935	117	691	-0.5484
112.54788	27.30665	82	808	-0.4518	112.26573	27.05845	118	829	-0.4099
112.87958	27.3021	83	1107	-0.0625	112.04996	27.04211	119	6119	5.85183
112.90246	27.29868	84	896	-0.2649	112.47813	27.04658	120	751	-0.5826
112.85948	27.29676	85	877	-0.342	112.46673	27.03327	121	293	-1.0982
112.85789	27.28668	86	712	-0.532	112.4373	27.03309	122	545	-0.7222
113.28931	27.28174	87	779	-0.3921	114.70262	27.64478	123	6243	3.86002
112.37349	27.23831	88	921	-0.3158	114.75504	27.59802	124	5140	2.96053
113.2768	27.23128	89	1630	0.8103	114.51512	27.53597	125	1483	0.59586
112.86492	27.22932	90	741	-0.483	114.46774	27.53507	126	606	-0.3967
112.22119	27.22234	91	1507	0.3769	114.53125	27.53327	127	1304	0.20096
113.15983	27.21765	92	781	-0.3368	114.61355	27.51079	128	1882	0.86542
112.73981	27.19694	93	328	-1.0183	114.55645	27.47932	129	2073	1.16334
113.08149	27.19562	94	5825	3.2986	114.34657	27.44874	130	4789	3.22459
112.86996	27.17716	95	604	-0.6479	114.37198	27.25701	131	1946	0.79629
112.16811	27.16508	96	924	-0.2402	114.22883	27.17986	132	3941	3.05031
112.86593	27.17266	97	629	-0.6243	114.2994	27.17176	133	2612	1.23722
112.47224	27.16269	98	1359	0.2386	114.28407	27.16817	134	4240	2.36722
112.15889	27.1545	99	910	-0.2907	114.16381	27.15737	135	2220	0.87688
112.12004	27.14145	100	823	-0.3928					

Figura 7. Correlación del Factor 1 & Rango de calidad de agua en función del total de sólidos disueltos (TSD) (tabla1, 2).

Figura 8. Distribución espacial del Factor 1 (tabla 1, 2), con respecto a la calidad de agua de pozos, norias y manantiales (TSD), presentada en las figuras 5 y 6.

narios, integran los acuíferos que se encuentran en operación (INEGI, 1996). Dichas secuencias litológicas presentan cambios de facies, de medio ambiente marino, lagunar y continental, con estructuras lenticulares de conglomerado y evaporita (Gastil et al., 1979; Ortlieb y Colletta, 1984). Esto evidencia que la zona geohidrológica 302 Vizcaíno, así como el resto que CNA (2007) designa para la región de la Reserva, se encuentra compuesta por un sistema de acuíferos cuyo control hidrológico está condicionado por la geología estructural y cambios de facies sedimentarias. Esto explica la distribución de la calidad de agua en los acuíferos subsuperficiales, compuestos por ambientes de depósito: residuales, diferentes aluvión y coluvión asociados a las bajadas de las sierras altas (La Giganta), con pozos y norias de agua dulce; depósitos aluviales, eólico y lacustre con pozos y norias de agua tolerable y costeros en los que se encuentran amplias marismas con pozos v norias de agua salada.

Lo anterior también se sustenta con la información de los análisis químicos de INEGI (1983) y el muestreo realizado en mayo de 2003, que aún con 20 años de diferencia muestran tendencias muy similares.

Dichas tendencias a su vez concuerdan con los resultados del análisis multivariado de Funciones Empíricas Ortogonales (figura 7, 8), en donde los índices extremos de similitud están asociados a diferencias muy marcadas en el contenido de TSD, tanto para los manantiales 121 y 123 de INEGI (1983, 1989), como para los pozos muestreados 23 y 8 (tablas 1, 2). Lo anterior es atribuible a su ubicación en extremos opuestos de la Reserva (figura 5, 6, 8), en donde las evidencias geológicas y actividad tectónica, se refleja en una litología y estratigrafía totalmente diferente (figura 2).

De lo anterior podemos observar que el manantial 121 y pozo 23, se ubica en el Cinturón volcánico miocénico, donde se concentran la mayoría de pozos, norias y manantiales de agua dulce (figura 2, 8). Estos se encuentran asociados a la bajada occidental de las sierras altas (La Giganta), donde predominan las rocas volcánicas y volcaniclásticas de la Formación Comondú (figura 1, 2). Mientras que el manantial 123 y pozo 8, se encuentra en el Bloque tectónico mesozoico y porción norte de la laguna Ojo de Liebre, en donde las elevadas concentraciones de TSD, dan al agua una calidad salada (figura 5, 6). Las obras hidráulicas y manantiales de esta zona se encuentran en rocas metamórficas y sedimentarias del Mesozoico y Cenozoico que atestiguan ambientes costeros, lagunares, y marino, así como depósitos Cuaternarios de marismas, características de las lagunas Ojo de Liebre y San Ignacio.

Resulta conveniente destacar que las obras hidráulicas del Bloque tectónico mesozoico cuya calidad de agua en su mayoría es salada se encuentran a elevaciones topográficas mayores que aquellos de agua tolerable y dulce de la llanura del Vizcaíno, por lo que se descarta que su calidad de agua salada se deba a un proceso de intrusión salina.

Conclusiones

Las zonas geohidrológicas, de explotación de agua subterránea referidas por CNA (2007), en la región de la Reserva de la Biosfera de El Vizcaíno se encuentran compuestas por diferentes sistemas de acuíferos, cuyas dimensiones y control hidrológico están condicionados por la geomorfología, geología estructural y estratigrafía de la región.

La calidad de agua subterránea, se encuentra en dependencia directa con la naturaleza de las formaciones geológicas que atraviesa, composición litológica de los acuíferos que la contiene y por su flujo a través de éstos (cambios de facies), así como con la solubilidad de los minerales que las integran, tiempo de contacto, temperatura y presión a la que el agua subterránea se encuentre sometida. Por consiguiente la calidad del agua subterránea en la RBV, es un aspecto inherente a la litología que caracteriza sus tres regiones tectónicas.

Conviene mencionar que la mayor parte del agua que se extrae de la zona geohidrológica 302 Vizcaíno, se destina para uso agrícola, por lo que su retorno al subsuelo contiene fertilizantes y plaguicidas lo cual reduce la disponibilidad de agua de buena calidad.

Bibliografía

- Bigurra-Pimentel, E. 1998. Análisis Geoeléctrico de la Zona Geotérmica de las Tres Vírgenes, B.C.S., México, Revista Geotermia, Comisión Federal de Electricidad, 14: 33-41.
- Comisión Federal de Electricidad (CFE). 1991. Interpretación de la Geología en la Zona Geotérmica de Las Tres Vírgenes, B.C.S., Gerencia de Proyectos Geotérmicos, México, D.F. Informe Técnico GPG-CLS-56/90, 84 p.
- Comisión Nacional del Agua (CNA). 2007. Mapa de acuíferos. México, D.F., Subgerencia de Sistema de Información Geográfica del Agua (SIGA), (en http://siga.cna.gob.mx/Vector/Mapas%20interactivos.aspx#indic

e)

- Comisión Nacional del Agua (CNA). 2002. Determinación de la Disponibilidad de Agua en el Acuífero Vizcaíno Estado de Baja California, México, D.F., Subgerencia de Evaluación y Modelación Hidrológica, (en http: //www.conagua.gob.mx/ CONAGUA07 /Noticias/DR_0302.pdf)
- Consejo de Recursos Minerales (CRM). 1999. Monografía Geológico-Minera del Estado de Baja California Sur. Consejo de Recursos Minerales, Pachuca, Hidalgo. México.
- Eaton, A.D., Clesceri, L.S., Rice, E.W. y Greenberg, A.E. 2005. Standard Methods for the Examination of Water & Wastewater. American Public Health Association, Washington, DC.
- García-Estrada, G. y González-López, M. 1998. Síntesis de los Estudios de Gravimetría, Magnetometría y Termometría en la Zona Geotérmica de las Tres Vírgenes, B.C.S., México, Revista Geotermia, Comisión Federal de Electricidad, 14: 15-32.
- Gastil, G., Krummenacher, D. y Minch, J. 1979. The record of Cenozoic volcanism around the Gulf of California., Bulletin Geologic Society of America, 90: 839-857.
- Hausback, B.P. 1984. Cenozoic Volcanic and Tectonic Evolution of Baja California Sur, México, in Frizzel, V. A. Jr., (ed.) Geology of the Baja California Peninsula: Pacific Section 39: 219-236.
- Instituto Nacional de Estadística, Geografía e Informática (INEGI). 1996. Estudio Hidrológico del Estado de Baja California Sur. Instituto Nacional de Estadística, Geografía e Informática, Aguascalientes, México.
- Instituto Nacional de Estadística, Geografía e Informática (INEGI). 1989. Carta hidrológica de aguas subterráneas Guerrero Negro G11-3, escala 1: 250,000, México. D.F., Secretaría de Programación y Presupuesto, Instituto Nacional de Estadística, Geografía e Informática, 1 mapa.
- Instituto Nacional de Estadística, Geografía e Informática (INEGI). 1983. Carta hidrológica de aguas subterráneas, Santa Rosalía G12-1, escala 1: 250,000, México. D.F., Secretaría de Programación y Presupuesto, Instituto Nacional de Estadística, Geografía e Informática, 1 mapa.

- López-Hernández, A. 1998. Síntesis Geológica de la Zona Geotérmica de las Tres Vírgenes, B.C.S., México., Revista Geotermia, Comisión Federal de Electricidad, 14: 3-14.
- Lozano, F. 1976. Evaluación petrolífera de la península de Baja California, Boletín. Asociación Mexicana de Geólogos Petroleros, V. XXVII: 106-303.
- Moore, T.E. 1984. Geology, petrology and tectonic significance of the Mesozoic paleooceanic terranes of the Vizcaino peninsula, Baja California Sur, Mexico. Doctoral Thesis, Harvard University, U.S.A.
- Ortlieb, L. y Colletta, B. 1984. Síntesis Cronoestratigráfica sobre el Neogeno y el Cuaternario Marino de la Cuenca de Santa Rosalía, Baja California Sur, México, in Neotectonics and sea level variations in the Gula of California area, Symposium, Hermosillo Sonora, Universidad Nacional Autónoma de México, Instituto de Geología, México D.F., pp. 241-268.
- Palma-Guzmán, S.H. 1998. Modelado de Datos Magnetotelúricos en el Campo Geotérmico de las Tres Vírgenes, B.C.S., México., Revista Geotermia, Comisión Federal de Electricidad, 14: 43-53.
- Secretaría de Comercio y Fomento Industrial (SCFI). 2001. Norma Mexicana de aguas NMX-AA-051.
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), 2007. Diagnóstico del Recurso Agua en el Estado de Baja California, (en http://www.semarnat.gob.mx/estados/bajacaliforniasur/temas/inf
- ormacionambiental/Documents/diagnostico%20del%20agua.pdf) Sedlock, R.L., Ortega-Gutiérrez, F. y Speed, R.C. 1993. Tectono-
- stratigraphic terrenes and tectonic evolution of Mexico. Geological Society of America, Special Paper 278, 153.